【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的11×11網(wǎng)格中,已知點(diǎn)A-3-3),B-1,-3),C-1-1)。

1)畫出ABC;

2)畫出ABC關(guān)于x軸對(duì)稱,并寫出各點(diǎn)的坐標(biāo);

3)以O為位似中心,在第一象限畫出將ABC放大2倍后的。

【答案】1)見(jiàn)解析;

2)圖見(jiàn)解析,A1-33),B1-1,3),C1-1,1);

3)見(jiàn)解析.

【解析】

1)在坐標(biāo)軸中先分別標(biāo)出AB、C三點(diǎn),然后依次連接三點(diǎn)即可得△ABC;

2)根據(jù)關(guān)于x軸對(duì)稱的性質(zhì):橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù)寫出即可,依次連接三點(diǎn)即可得△A1 B1 C1

3)根據(jù)位似的性質(zhì),找到放大后的坐標(biāo),描點(diǎn)、連線即可得.

1)△ABC如圖所示;

2)△A1 B1 C1如圖所示,A1-3,3),B1-1,3),C1-1,1);

3)△A2 B2 C2如圖所示.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形紙片ABCD中, ,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)分別在邊上,則的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果把一條拋物線繞它的頂點(diǎn)旋轉(zhuǎn)180°得到的拋物線我們稱為原拋物線的孿生拋物線”.

1)求拋物線y=x-2x孿生拋物線的表達(dá)式;

2)若拋物線y=x-2x+c的頂點(diǎn)為D,與y軸交于點(diǎn)C,其孿生拋物線y軸交于點(diǎn),請(qǐng)判斷DCC’的形狀,并說(shuō)明理由:

3)已知拋物線y=x-2x-3y軸交于點(diǎn)C,與x軸正半軸的交點(diǎn)為A,那么是否在其孿生拋物線上存在點(diǎn)P,在y軸上存在點(diǎn)Q,使以點(diǎn)A、CP、Q為頂點(diǎn)的四邊形為平行四邊形,若存在,求出P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為100元的新商品,在商場(chǎng)試銷發(fā)現(xiàn):銷售單價(jià)x(/)與每天銷售量y()之間滿足如圖所示的關(guān)系:

(1)求出yx之間的函數(shù)關(guān)系式;

(2)寫出每天的利潤(rùn)W與銷售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場(chǎng)負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來(lái)保證每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副三角板按如圖的所示放置,下列結(jié)論中不正確的是(

A. ,則有;

B. ;

C. ,則有;

D. 如果,必有.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m,n是任意兩個(gè)實(shí)數(shù),規(guī)定m,n兩數(shù)較大的的數(shù)稱作這兩個(gè)數(shù)的絕對(duì)最值,用sec(m,n)表示。例如:sec(-1-2)=-1,sec(1,2)=2,sec(0,0)=0,參照上面的材料,解答下列問(wèn)題:

1sec(,3.14)=________,sec(,)=__________;

2)若sec(-3x-1,x+1)=-3x-1,x的取值范圍;

3)求函數(shù)的圖象的交點(diǎn)坐標(biāo),函數(shù)圖象如圖所示,請(qǐng)你在圖中作出函數(shù)的圖象,并根據(jù)圖象直接寫出sec-x+2, )的最小值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2mxm2+4

1)求證:該二次函數(shù)的圖象與x軸必有兩個(gè)交點(diǎn);

2)若該二次函數(shù)的圖象與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),頂點(diǎn)為C,

求△ABC的面積;

若點(diǎn)P為該二次函數(shù)圖象上位于A、C之間的一點(diǎn),則△PAC面積的最大值為   ,此時(shí)點(diǎn)P的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,以為直徑作⊙,分別交、于點(diǎn)、,點(diǎn)的延長(zhǎng)線上,且

1)求證:與⊙相切.

2)若,求的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的外接圓圓心OAB上,點(diǎn)DBC延長(zhǎng)線上一點(diǎn),DMABM,交ACN,且AC=CDCP是△CDN的邊ND上的中線.

(1)求證:AB=DN;

(2)試判斷CP與⊙O的位置關(guān)系,并證明你的結(jié)論;

(3)PC5,CD8,求線段MN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案