【題目】如圖,拋物線(a≠0)的對(duì)稱軸為直=1,與軸的一個(gè)交點(diǎn)坐標(biāo)為(-1,0),其部分圖象如圖所示.下列結(jié)論:① ;②方程=0的兩個(gè)根是,; ③;④當(dāng)時(shí),的取值范圍是;⑤當(dāng)x1<x2<0時(shí),y1<y2.其中結(jié)論正確的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】C
【解析】分析:利用拋物線與x軸的交點(diǎn)個(gè)數(shù)可對(duì)①進(jìn)行判斷;利用拋物線的對(duì)稱性得到拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(3,0),則可對(duì)②進(jìn)行判斷;由對(duì)稱軸方程得到b=-2a,然后根據(jù)x=-1時(shí)函數(shù)值為0可得到3a+c=0,則可對(duì)③進(jìn)行判斷;根據(jù)拋物線在x軸上方所對(duì)應(yīng)的自變量的范圍可對(duì)④進(jìn)行判斷;根據(jù)二次函數(shù)的性質(zhì)對(duì)⑤進(jìn)行判斷.
詳解:∵拋物線與x軸有2個(gè)交點(diǎn),
∴b2-4ac>0,所以①正確;
∵拋物線的對(duì)稱軸為直線x=1,
而點(diǎn)(-1,0)關(guān)于直線x=1的對(duì)稱點(diǎn)的坐標(biāo)為(3,0),
∴方程ax2+bx+c=0的兩個(gè)根是x1=-1,x2=3,所以②正確;
∵x=-=1,即b=-2a,
而x=-1時(shí),y=0,即a-b+c=0,
∴a+2a+c=0,所以③錯(cuò)誤;
∵拋物線與x軸的兩點(diǎn)坐標(biāo)為(-1,0),(3,0),
∴當(dāng)-1<x<3時(shí),y>0,所以④錯(cuò)誤;
∵拋物線的對(duì)稱軸為直線x=1,
∴當(dāng)x<1時(shí),y隨x增大而增大,所以⑤正確.
故答案為①②⑤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖線與坐標(biāo)軸分別交于點(diǎn)A、B、C,其中點(diǎn)A(0,8),OB=OA.
(1)求二次函數(shù)的表達(dá)式;
(2)若OD=OB,點(diǎn)F為該二次函數(shù)在第二象限內(nèi)圖象上的動(dòng)點(diǎn),E為DF的中點(diǎn),當(dāng)△CEF的面積最大時(shí),求出點(diǎn)E的坐標(biāo);
(3)將三角形CEF繞E旋轉(zhuǎn)180°,C點(diǎn)落在M處,若M恰好在該拋物線上,求出此時(shí)△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)方法回顧
在學(xué)習(xí)三角形中位線時(shí),為了探索三角形中位線的性質(zhì),思路如下:
第一步添加輔助線:如圖1,在△ABC中,延長(zhǎng)DE (D、E分別是AB、AC的中點(diǎn))到點(diǎn)F,使得EF=DE,連接CF;
第二步證明△ADE≌△CFE,再證四邊形DBCF是平行四邊形,從而得到DE∥BC,DE=BC.
(2)問題解決
如圖2,在正方形ABCD中,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=2,DF=3,∠GEF=90°,求GF的長(zhǎng).
(3)拓展研究
如圖3,在四邊形ABCD中,∠A=100°,∠D=110°,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=4,DF=,∠GEF=90°,求GF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是邊長(zhǎng)為2的菱形對(duì)角線上的一個(gè)動(dòng)點(diǎn),點(diǎn),分別是,邊上的中點(diǎn),則的最小值是( )
A.1B.2C.D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角板的直角頂點(diǎn)在正方形的頂點(diǎn)上,若,則下列結(jié)論錯(cuò)誤的是( )
A. B. C. ∠4=450 D. ∠5=300
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在Rt△ABC中,∠A=90°,AB=AC=4.點(diǎn)E為Rt△ABC邊上一點(diǎn),以每秒1單位的速度從點(diǎn)C出發(fā),沿著C→A→B的路徑運(yùn)動(dòng)到點(diǎn)B為止.連接CE,以點(diǎn)C為圓心,CE長(zhǎng)為半徑作⊙C,⊙C與線段BC交于點(diǎn)D.設(shè)扇形DCE面積為S,點(diǎn)E的運(yùn)動(dòng)時(shí)間為t.則在以下四個(gè)函數(shù)圖象中,最符合扇形面積S關(guān)于運(yùn)動(dòng)時(shí)間t的變化趨勢(shì)的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB,DC(或它們的延長(zhǎng)線)于點(diǎn)M,N.當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí)(如圖1),易證BM+DN=MN.
(1)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí)(如圖2),線段BM,DN和MN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.
(2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到如圖3的位置時(shí),線段BM,DN和MN之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2∥l3∥l4,相鄰兩條平行線間的距離都是1,正方形ABCD的四個(gè)頂點(diǎn)分別在四條直線上,則正方形ABCD的面積為( 。
A. B. C. 3 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點(diǎn)A作⊙O的切線交OC的延長(zhǎng)線于點(diǎn)D,交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:∠DAC=∠DCE;
(2)若AE=ED=2,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com