5.已知y關(guān)于x的函數(shù)同時滿足下列兩個條件:
①當(dāng)x<2時,函數(shù)值y隨x的增大而增大
②當(dāng)x>2時,函數(shù)值y隨x的增大而減小
解析式可以是:y=-(x-2)2(寫出一個即可).

分析 根據(jù)拋物線的對稱性確定開口方向、對稱軸,寫出符合條件的一個解析式即可.

解答 解:∵當(dāng)x<2時,函數(shù)值y隨x的增大而增大,當(dāng)x>2時,函數(shù)值y隨x的增大而減小,
∴二次項系數(shù)小于0,對稱軸是x=2,
∴解析式可以是y=-(x-2)2,
故答案為:y=-(x-2)2

點評 本題考查的是二次函數(shù)的性質(zhì),根據(jù)題意確定拋物線的開口方向、對稱軸是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.若關(guān)于x的一元二次方程kx2-6x+9=0有兩個不相等的實數(shù)根,則k的取值范圍是(  )
A.k>1B.k≠0C.k<1D.k<1且k≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.tan60°的值等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,四邊形紙片ABCD中,∠A=70°,∠B=80°,將紙片折疊,使C,D落在AB邊上的C′,D′處,折痕為MN,則∠AMD′+∠BNC′=( 。
A.50°B.60°C.70°D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.已知:⊙O是四邊形ABCD的外接圓,AC與BD交于點E.
(1)如圖1,求證:EA•EC=EB•ED;
(2)如圖2,若對角線AC⊥BD,圓心O到AD的距離為2,你能求出四邊形ABCD的哪一個邊的長,并寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.若a2n+1=-1(n為自然數(shù)),那么a=-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.如圖,在△ABC中,∠ABC=60°,AB=6,BC=10,以AC為邊在△ABC外作等邊△ACD,則BD的長為14.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點,點A是函數(shù)y=$\frac{1}{x}$(x<0)圖象上一點,AO的延長線交函數(shù)y=$\frac{k^2}{x}$(x>0,k>0的常數(shù))的圖象于點C,點A關(guān)于y軸的對稱點為A′,點C關(guān)于x軸的對稱點為C′且點O、A′、C′在同一條直線上,連接CC′,交x軸于點B,連接AB,AA′,A′C′,若△ABC的面積等于6,則由線段AC,CC′,C′A′,A′A所圍成的圖形的面積等于10.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.如圖1所示,在A,B兩地之間有汽車站C站,客車由A地駛往C站,貨車由B地駛往A地.兩車同時出發(fā),勻速行駛.圖2是客車、貨車離C站的路程y1,y2(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系圖象.
(1)填空:A,B兩地相距420千米;
(2)求兩小時后,貨車離C站的路程y2與行駛時間x之間的函數(shù)關(guān)系式;
(3)客、貨兩車何時相遇?相遇處離C站的路程是多少千米?

查看答案和解析>>

同步練習(xí)冊答案