【題目】如圖,已知一個直角三角形紙片ACB,其中ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點(diǎn),連接EF.

(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,且使S四邊形ECBF=3SEDF,求AE的長;

(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在BC邊上的點(diǎn)M處,且使MFCA.

①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;

②求EF的長;

(3)如圖③,若FE的延長線與BC的延長線交于點(diǎn)N,CN=1,CE=,求的值.

【答案】(1)(2)四邊形AEMF為菱形,理由詳見解析;;(3)

【解析】

試題分析:(1)先利用折疊的性質(zhì)得到EF⊥AB,△AEF≌△DEF,則S△AEF≌S△DEF,則易得S△ABC=4S△AEF,再證明Rt△AEF∽Rt△ABC,然后根據(jù)相似三角形的性質(zhì)得到=(2,再利用勾股定理求出AB即可得到AE的長;(2)①通過證明四條邊相等判斷四邊形AEMF為菱形;

②連結(jié)AM交EF于點(diǎn)O,如圖②,設(shè)AE=x,則EM=x,CE=4﹣x,先證明△CME∽△CBA得到==,解出x后計算出CM=,再利用勾股定理計算出AM,然后根據(jù)菱形的面積公式計算EF;

(3)如圖③,作FH⊥BC于H,先證明△NCE∽△NFH,利用相似比得到FH:NH=4:7,設(shè)FH=4x,NH=7x,則CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,再證明△BFH∽△BAC,利用相似比可計算出x=,則可計算出FH和BH,接著利用勾股定理計算出BF,從而得到AF的長,于是可計算出的值.

試題解析:(1)如圖①,

∵△ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,

∴EF⊥AB,△AEF≌△DEF,

∴S△AEF≌S△DEF,

∵S四邊形ECBF=3S△EDF

∴S△ABC=4S△AEF,

在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,

∴AB==5,

∵∠EAF=∠BAC,

∴Rt△AEF∽Rt△ABC,

=(2,即(2=,

∴AE=;

(2)①四邊形AEMF為菱形.理由如下:

如圖②,∵△ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,

∴AE=EM,AF=MF,∠AFE=∠MFE,

∵M(jìn)F∥AC,

∴∠AEF=∠MFE,

∴∠AEF=∠AFE,

∴AE=AF,

∴AE=EM=MF=AF,

∴四邊形AEMF為菱形;

②連結(jié)AM交EF于點(diǎn)O,如圖②,

設(shè)AE=x,則EM=x,CE=4﹣x,

∵四邊形AEMF為菱形,

∴EM∥AB,

∴△CME∽△CBA,

==,即==,解得x=,CM=,

在Rt△ACM中,AM===,

∵S菱形AEMF=EFAM=AECM,

∴EF=2×=;

(3)如圖③,作FH⊥BC于H,

∵EC∥FH,

∴△NCE∽△NFH,

∴CN:NH=CE:FH,即1:NH=:FH,

∴FH:NH=4:7,

設(shè)FH=4x,NH=7x,則CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,

∵FH∥AC,

∴△BFH∽△BAC,

∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=,

∴FH=4x=,BH=4﹣7x=,

在Rt△BFH中,BF==2,

∴AF=AB﹣BF=5﹣2=3,

=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出一個一根為2的一元二次方程______________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一副三角尺的直角頂點(diǎn)疊放在點(diǎn)C處,∠D=30°,∠B=45°,求:
(1)若∠DCE=35°,求∠ACB的度數(shù).
(2)若∠ACB=120°,求∠DCE的度數(shù).
(3)猜想∠ACB和∠DCE的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的等邊△ABC中,D為BC的中點(diǎn),E是AC邊上一點(diǎn),則BE+DE的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,BC=6cm.射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動,同時點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動,設(shè)運(yùn)動時間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時,求證:△ADE≌△CDF;
(2)填空: ①當(dāng)t為s時,四邊形ACFE是菱形;
②當(dāng)t為s時,以A、F、C、E為頂點(diǎn)的四邊形是直角梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)E在BC上,CD⊥AB,EF⊥AB,垂足分別為D、F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點(diǎn)均在小正方形的頂點(diǎn)上.

(1)如圖1,點(diǎn)P在小正方形的頂點(diǎn)上,在圖1中作出點(diǎn)P關(guān)于直線AC的對稱點(diǎn)Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長;

(2)在圖2中畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點(diǎn)B和點(diǎn)D均在小正方形的頂點(diǎn)上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師想知道某校學(xué)生每天上學(xué)路上要花多少時間,于是隨機(jī)選取30名同學(xué)每天來校的大致時間(單位:分鐘)進(jìn)行統(tǒng)計,統(tǒng)計表如下:

時間

5

10

15

20

25

30

35

45

人數(shù)

3

3

6

12

2

2

1

1


(1)寫出這組數(shù)據(jù)的中位數(shù)和眾數(shù);
(2)求這30名同學(xué)每天上學(xué)的平均時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩圓的半徑分別是2和3,圓心距是5,則這兩圓的位置關(guān)系是

查看答案和解析>>

同步練習(xí)冊答案