分析 (1)當(dāng)t=2時(shí),可求出CP,CQ的長,根據(jù)勾股定理即可求出線段即斜邊PQ的長;
(2)由三角形面積公式可建立關(guān)于t的方程,解方程求出t的值即可;
(3)延長QE交AC于點(diǎn)D,若PE⊥AB,則QD∥AB,所以可得△CQD∽△CBA,由相似三角形的性質(zhì):對應(yīng)邊的比值相等可求出DE=0.5t,易證△ABC∽△DPE,再由相似三角形的性質(zhì)可得$\frac{DE}{AC}=\frac{PE}{BC}$,把已知數(shù)據(jù)代入即可求出t的值.
解答 解:
(1)當(dāng)t=2時(shí),
∵點(diǎn)P從A出發(fā)沿AC向C點(diǎn)以1厘米/秒的速度勻速移動(dòng);點(diǎn)Q從C出發(fā)沿CB向B點(diǎn)以2厘米/秒的速度勻速移動(dòng),
∴AP=2厘米,QC=4厘米,
∴PC=4,在Rt△PQC中PQ=$\sqrt{A{P}^{2}+Q{C}^{2}}$=$4\sqrt{2}$厘米;
(2)∵點(diǎn)P從A出發(fā)沿AC向C點(diǎn)以1厘米/秒的速度勻速移動(dòng);點(diǎn)Q從C出發(fā)沿CB向B點(diǎn)以2厘米/秒的速度勻速移動(dòng),
∴PC=AC-AP=6-t,CQ=2t,
∴S△CPQ=$\frac{1}{2}$CP•CQ=$\frac{{({6-t})•2t}}{2}=5$,
∴t2-6t+5=0
解得t1=1,t2=5(不合題意,舍去)
∴當(dāng)t=1秒時(shí),△PCQ的面積等于5cm2;
(3)能垂直,理由如下:
延長QE交AC于點(diǎn)D,
∵將△PQC翻折,得到△EPQ,
∴△QCP≌△QEP,
∴∠C=∠QEP=90°,
若PE⊥AB,則QD∥AB,
∴△CQD∽△CBA,
∴$\frac{CQ}{BC}=\frac{QD}{AB}$,
∴$\frac{2t}{8}=\frac{QD}{10}$,
∴QD=2.5t,
∵QC=QE=2t
∴DE=0.5t
易證△ABC∽△DPE,
∴$\frac{DE}{AC}=\frac{PE}{BC}$
∴$\frac{0.5t}{6}=\frac{6-t}{8}$,
解得:t=$\frac{18}{5}$(0≤t≤4),
綜上可知:當(dāng)t=$\frac{18}{5}$時(shí),PE⊥AB.
點(diǎn)評 此題考查了勾股定理、三角形的面積公式、相似三角形的判定性質(zhì)與判定等知識以及折疊的性質(zhì),綜合性很強(qiáng),比較難,內(nèi)容比較多,也是一個(gè)動(dòng)點(diǎn)問題,對于學(xué)生的能力要求比較高,是一道不錯(cuò)的中考題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
人數(shù) | 甲旅店 | 乙旅店 |
少于50人 | 一律八折優(yōu)惠 | 七折優(yōu)惠 |
不少于50人 | 五折優(yōu)惠 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3cm | B. | 6cm | C. | 11cm | D. | 14cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | AE=CF | B. | BE=FD | C. | BF=DE | D. | ∠1=∠2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com