【題目】直角三角形的三邊為 x,x﹣y,x+y 且 x、y 都為正整數(shù),則三角形其中一邊長可能為( )
A.31B.41C.51D.61
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,A(0,1),B(4,1),C為x軸正半軸上一點,且AC平分∠OAB.
(1)求證:∠OAC=∠OCA;
(2)如圖2,若分別作∠AOC的三等分線及∠OCA的外角的三等分線交于點P,即滿足∠POC= ∠AOC,∠PCE= ∠ACE,求∠P的大小;
(3)如圖3,在(2)中,若射線OP、OC滿足∠POC= ∠AOC,∠PCE= ∠ACE,猜想∠OPC的大小,并證明你的結(jié)論(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
《張丘建算經(jīng)》是一部數(shù)學問題集,其內(nèi)容、范圍與《九章算術(shù)》相仿。其中提出并解決了一個在數(shù)學史上非常著名的不定方程問題,通常稱為“百雞問題”:“今有雞翁一值錢五,雞母一值錢三,雞雛三值錢一。凡百錢買雞百只,問雞翁、母、雛各幾何!
譯文:公雞每只值五文錢,母雞每只值三文錢,小雞每三只值一文錢,F(xiàn)在用一百文錢買一百只雞,問這一百只雞中,公雞、母雞、小雞各有多少只?
結(jié)合你學過的知識,解決下列問題:
(1)若設(shè)公雞有x只,母雞有y只,
①則小雞有只,買小雞一共花費文錢;(用含x,y的式子表示)
②根據(jù)題意列出一個含有x,y的方程: ;
(2)若對“百雞問題”增加一個條件:公雞數(shù)量是母雞數(shù)量的3倍,求此時公雞、母雞、小雞各有多少只?
(3)除了問題(2)中的解之外,請你再直接寫出兩組符合“百雞問題”的解。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】寫成省略加號和的形式后為-6-7-2+9的式子是( )
A. (-6)-(+7)-(-2)+(+9) B. -(+6)-(-7)-(+2)-(+9)
C. (-6)+(-7)+(+2)-(-9) D. -6-(+7)+(-2)-(-9)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=4,動點Q從點A出發(fā),以每秒1個單位的速度,沿AB向點B移動;同時點P從點B出發(fā),仍以每秒1個單位的速度,沿BC向點C移動,連接QP,QD,PD.若兩個點同時運動的時間為x秒(0<x≤3),解答下列問題:
(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當x為何值時,S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com