19.如圖,在△ABC中,AB=AC,∠A=36°,CD平分∠ACB交AB于點D,若CA=4,則CB的長是( 。
A.2$\sqrt{5}$+2B.$\sqrt{5}$+1C.$\sqrt{5}$-1D.2$\sqrt{5}$-2

分析 根據(jù)題意得到△ABC是黃金三角形,根據(jù)黃金分割的概念以及黃金比值計算即可.

解答 解:∵△ABC中,AB=AC,∠A=36°,
∴△ABC是黃金三角形,
∴BC=$\frac{\sqrt{5}-1}{2}$AC=2$\sqrt{5}$-2,
故選:D.

點評 本題考查的是黃金三角形的知識以及黃金分割的概念,掌握$\frac{\sqrt{5}-1}{2}$叫做黃金比是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.閱讀:在直線上有n個不同的點,則此圖中共有多少條線段?通過分析、畫圖嘗試得如下表格:
 圖形 直線上點的個數(shù) 共有線段的條數(shù) 兩者關(guān)系
  2 1 0+1=$\frac{2×(2-1)}{2}$=1
  3 3 0+1+2=$\frac{3×(3-1)}{2}$=3
  4 6 0+1+2+3=$\frac{4×(4-1)}{2}$=6
 … … … …
  n  
問題:
(1)把表格補(bǔ)充完整;
(2)根據(jù)上述得到的信息解決下列問題:
①某學(xué)校七年級共有20個班進(jìn)行辯論賽,規(guī)定進(jìn)行單循環(huán)賽(每兩班賽一場),那么該校七年級的辯論賽共要進(jìn)行多少場?
②乘火車從A站出發(fā),沿途經(jīng)過10個車站方可到達(dá)B站,那么在A,B兩站之間需要安排多少種不同的車票?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.反比例函數(shù)y=$\frac{k}{x}$(k≠0)的圖象在直角坐標(biāo)系中的位置如圖,若點A(-1,y1),B(2,y2),C(3,y3)的在函數(shù)y=$\frac{k}{x}$(k≠0)的圖象上,則y1,y2,y3的大小關(guān)系為( 。
A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y2<y3<y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.分解因式
①-a2+2ab-b2
②x2y-2xy2+xy
③16x4-72x2+81
④(a-b)3c-2(a-b)2c+(a-b)c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.下列根式是最簡根式的是( 。
A.$\sqrt{0.2}$B.$\frac{\sqrt{15}}{3}$C.$\sqrt{{a}^{2}-2ab+^{2}}$D.$\sqrt{18}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.(1)解方程:x2-4x-5=0
(2)計算:$\sqrt{2}$sin45°-tan45°-2cos60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖,方格紙中每個小方格的邊長為1個單位長度,△ABC的頂點都在小方格的頂點上,已知點B的坐標(biāo)是(4,0),點C的坐標(biāo)是(1,2).
(1)在圖中建立平面直角坐標(biāo)系;
(2)在(1)中所建的平面直角坐標(biāo)系中,畫出△ABC關(guān)于y軸對稱的△A1B1C1(要求點A1與點A,點B1與點B,點C1與點C相對應(yīng)),并寫出點A1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.已知a+b+c=9,a2+b2+c2=35,則ab+bc+ca=23.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

7.下列分式中,是最簡分式的是( 。
A.$\frac{x+1}{2(x+1)}$B.$\frac{x-y}{{x}^{2}-{y}^{2}}$C.$\frac{3{x}^{2}+x}{{x}^{2}}$D.$\frac{x+1}{{x}^{2}+1}$

查看答案和解析>>

同步練習(xí)冊答案