如圖,正方形ABCD內(nèi)接于⊙O,⊙O的半徑為2,以圓心O為頂點(diǎn)作∠MON,使∠MON=90°,OM、ON分別與⊙O交于點(diǎn)E、F,與正方形ABCD的邊交于點(diǎn)G、H,則由OE、OF、
EF
及正方形ABCD的邊圍成的圖形(陰影部分)的面積S=______.


過(guò)點(diǎn)O作OP⊥AB,OQ⊥BC,則OP=OQ,
在△OPH和△OQG中,
∠HOP=∠GOQ
∠OPH=∠OQG
OQ=OP
,
故可得△OPH≌△OQG,從而可得四邊形OHBG與正方形OQBP的面積,
∵圓的半徑為2,
∴OQ=OP=
2
,
S陰影=S扇形OEF-SOHBG=S扇形OEF-SOQBP=
90π×22
360
-
2
×
2
=π-2.
故答案為:π-2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在半徑為2,圓心角等于90°的扇形AOB內(nèi)部作一個(gè)直角梯形OBCD,使點(diǎn)C在
AB
上,且為
AB
的中點(diǎn),D在OA上,則陰影部分的面積為(結(jié)果保留π)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,從一個(gè)直徑為2的圓形鐵皮中剪下一個(gè)圓心角為90°的扇形.
(1)求這個(gè)扇形的面積(結(jié)果保留π);
(2)在剩下的三塊余料中,能否從第③塊余料中剪出一個(gè)圓作為底面與此扇形圍成一個(gè)圓錐?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知菱形ABCD為2cm.B、C兩點(diǎn)在以點(diǎn)A為圓心的
EF
上,求
BC
的長(zhǎng)度及扇形ABC的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知:⊙O的直徑AB與弦AC的夾角∠A=30°,過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)P.
(1)求證:AC=CP;
(2)若PC=6,求圖中陰影部分的面積(結(jié)果精確到0.1).
(參考數(shù)據(jù):
3
=1.73
,π=3.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖△ABC中,∠C=90°,AC=3,BC=4,CD是AB邊上的高,分別以AC、BC為直徑的半圓交于C、D兩點(diǎn).則圖中的陰影部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

公園里有兩幅并列的廣告牌,其一是由兩條同圓心的弧
AB
、
CD
和線段AC、BD圍成的圖形,
AB
CD
的長(zhǎng)分別是5πm和4πm,AC=BD=2m;另一幅是圓形,圓的半徑是3m.在同一時(shí)刻的陽(yáng)光照耀下,試比較兩幅廣告牌在水平地面留下的陰影面積的大。ú挥(jì)擎桿陰影面積,寫出解答過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,兩個(gè)半徑相等的直角扇形的圓心分別在對(duì)方的圓弧上,半徑AE、CF交于點(diǎn)G,半徑BE、CD交于點(diǎn)H,且點(diǎn)C是
AB
的中點(diǎn),若扇形的半徑為2,則圖中陰影部分的面積等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在△ABC中,∠C=90°,AC=BC,AB=2
2
,點(diǎn)O為AB的中點(diǎn),以點(diǎn)O為圓心作半圓與邊AC相切于點(diǎn)D.則圖中陰影部分的面積為(  )
A.1-
1
4
π
B.1-
1
8
π
C.2-
3
4
π
D.2-
1
4
π

查看答案和解析>>

同步練習(xí)冊(cè)答案