如圖,直角梯形ABCD中,ADBC,AB⊥BC,AD=4,BC=6.將腰CD以D為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)90°至DE,連接AE,則△ADE的面積是______.
作EF⊥AD交AD延長線于F,作DG⊥BC.如下圖所示:
∵CD以D為中心逆時(shí)針旋轉(zhuǎn)90°至ED,
∵AD=4,BC=6,
∴DE=DC,DE⊥DC,∠CDG=∠EDF,
∴△CDG≌△EDF,
∴EF=CG.
又∵DG⊥BC,所以AD=BG,
∴EF=CG=BC-AD=6-4=2,
∴△ADE的面積是:
1
2
AD•EF=
1
2
×4×2=4.
故答案為:4.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別是△ABC三邊的中點(diǎn).求證:四邊形ADEF是菱形.
(2)一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用時(shí)間與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在梯形ABCD中,∠ABC=90°,ADBC,BC>AD,AB=8cm,BC=18cm,CD=10cm,點(diǎn)P從點(diǎn)B開始沿BC邊向終點(diǎn)C以每秒3cm的速度移動,點(diǎn)Q從點(diǎn)D開始沿DA邊向終點(diǎn)A以每秒2cm的速度移動,設(shè)運(yùn)動時(shí)間為t秒.
(1)求四邊形ABPQ為矩形時(shí)t的值;
(2)若題設(shè)中的“BC=18cm”改變?yōu)椤癇C=kcm”,其它條件都不變,要使四邊形PCDQ是等腰梯形,求t與k的函數(shù)關(guān)系式,并寫出k的取值范圍;
(3)在移動的過程中,是否存在t使P、Q兩點(diǎn)的距離為10cm?若存在求t的值,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知等腰梯形ABCD中ADBC,BD平分∠ABC,BD⊥DC,且梯形ABCD的周長為30cm,則求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在梯形ABCD中,DCAB,將梯形對折,使點(diǎn)D、C分別落在AB上的點(diǎn)D′、C′,折痕為EF,若CD=3cm,EF=4cm,則AD′+BC′為( 。
A.2cmB.3cmC.4cmD.5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,梯形ABCD中,ADBC,點(diǎn)E在BC上,AE=BE,點(diǎn)F是CD的中點(diǎn),且AF⊥AB,若AD=2.7,AF=4,AB=6,則CE的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知等腰梯形的高為5cm,兩底之差為10cm,則它的銳角為( 。
A.300°B.45°C.60°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1所示,在直角梯形ABCD中,ADBC,∠DCB=75°,AB⊥BC,以CD為一邊的等邊△DCE的另一頂點(diǎn)E在腰AB上.
(1)求∠AED的度數(shù);
(2)求證:AB=BC;
(3)如圖2所示,若F為線段CD上一點(diǎn),∠FBC=30°,△BFC的面積=4cm2,求AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,AB⊥BC,∠DCB=75°,以CD為一邊的等邊△DCE的另一頂點(diǎn)E在腰AB上.
(1)求∠AED的度數(shù);
(2)求證:AB=BC.

查看答案和解析>>

同步練習(xí)冊答案