【題目】已知拋物線與軸交于點(diǎn),對(duì)稱軸為.
試用含的代數(shù)式表示、.
當(dāng)拋物線與直線交于點(diǎn)時(shí),求此拋物線的解析式.
求當(dāng)取得最大值時(shí)的拋物線的頂點(diǎn)坐標(biāo).
【答案】(1);(2)拋物線為;(3)拋物線的頂點(diǎn)坐標(biāo)為.
【解析】
(1)根據(jù)拋物線與y軸的交點(diǎn)可以得到c與a的關(guān)系,根據(jù)對(duì)稱軸可以得到b與a的關(guān)系;
(2)間已知點(diǎn)的坐標(biāo)代入函數(shù)關(guān)系式并結(jié)合上題求得的系數(shù)的關(guān)系得到a、b、c的值即可求得其解析式;
(3)b(c+6)=-2a(3a+6)=-6a2-12a=-6(a+1)2+6,從而確定a的值,確定二次函數(shù)的解析式后即可確定其頂點(diǎn)坐標(biāo).
解:∵拋物線與軸交于點(diǎn)
∴
∵對(duì)稱軸為,
∴
∴;
∵拋物線與直線交于點(diǎn),
∴在拋物線上,
∴
∴
∴
∴拋物線為;∵
當(dāng)時(shí),的最大值為;
∴拋物線
故拋物線的頂點(diǎn)坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形中,為邊的中點(diǎn),為邊的延長(zhǎng)線上一點(diǎn),,于點(diǎn).下列結(jié)論錯(cuò)誤的是( )
A.
B.
C.
D..
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的函數(shù)(為常數(shù))
(1)若函數(shù)的圖象與軸恰有一個(gè)交點(diǎn),求的值;
(2)若函數(shù)的圖象是拋物線,且頂點(diǎn)始終在軸上方,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)邊長(zhǎng)為a的大正方形和四個(gè)邊長(zhǎng)為b的全等的小正方形(其中a>2b),按如圖方式擺放,并順次連接四個(gè)小正方形落入大正方形內(nèi)部的頂點(diǎn),得到四邊形ABCD.
下面有四種說法:
①陰影部分周長(zhǎng)為4a;
②陰影部分面積為(a+2b)(a-2b);
③四邊形ABCD周長(zhǎng)為8a-4b;
④四邊形ABCD的面積為a24ab4b2.
所有合理說法的序號(hào)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(1,0),(0,2),某拋物線的頂點(diǎn)坐標(biāo)為D(-1,1)且經(jīng)過點(diǎn)B,連接AB,直線AB與此拋物線的另一個(gè)交點(diǎn)為C,則S△BCD:S△ABO=( )
A. 8:1B. 6:1C. 5:1D. 4:1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對(duì)稱點(diǎn)為點(diǎn)D,連接AD,BD,其中BD交直線AP于點(diǎn)E.
(1)依題意補(bǔ)全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);
(3)連結(jié)CE,寫出AE, BE, CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,8),點(diǎn)B(6,8).
(1)只用直尺(沒有刻度)和圓規(guī),求作一個(gè)點(diǎn)P,使點(diǎn)P同時(shí)滿足下列兩個(gè)條件:
①點(diǎn)P到A,B兩點(diǎn)的距離相等; ②點(diǎn)P到∠xOy的兩邊的距離相等.(要求保留作圖痕跡,不必寫出作法)
(2)在(1)作出點(diǎn)P后,點(diǎn)P的坐標(biāo)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售一款進(jìn)價(jià)為每件40元的護(hù)膚品,調(diào)查發(fā)現(xiàn),銷售單價(jià)不低于40元且不高于80元時(shí),該商品的日銷售量y(件)與銷售單價(jià)x(元)之間存在一次函數(shù)關(guān)系,當(dāng)銷售單價(jià)為44元時(shí),日銷售量為72件;當(dāng)銷售單價(jià)為48元時(shí),日銷售量為64件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)該護(hù)膚品的日銷售利潤(rùn)為w(元),當(dāng)銷售單價(jià)x為多少時(shí),日銷售利潤(rùn)w最大,最大日銷售利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為△ABC內(nèi)的一點(diǎn),D,E,F分別是點(diǎn)P關(guān)于邊AB,BC,CA所在直線的對(duì)稱點(diǎn),那么∠ADB+∠BEC+∠CFA=______°.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com