【題目】如圖,在平面直角坐標(biāo)系中,點為坐標(biāo)原點,將含30°角的放在第一象限,其中30°角的對邊長為1,斜邊的端點,分別在軸的正半軸,軸的正半軸上滑動,連接,則線段的長的最大值是(

A.2B.C.D.

【答案】A

【解析】

AB的中點F,連接CF、OF.首先求出OF=FC=1,根據(jù)三角形的三邊關(guān)系可知:OC≤OF+OC,推出當(dāng)O、FC共線時,OC的值最大,最大值為2

解:取AB的中點F,連接CFOF

RtABC中,∵∠ACB=90°,∠BAC=30°,BC=1,
AB=2BC=2,
∵∠AOB=90°,AF=FB,
OF=FC=AB=1
OC≤OF+CF,
∴當(dāng)O、F、C共線時,OC的值最大,最大值為2
故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,以AB為直徑的⊙OBC于點D,連結(jié)AD,請你添加一個條件,使△ABD≌△ACD,并說明全等的理由.

你添加的條件是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+2ax+ca0)的圖象與x軸交于A、B兩點,與y軸交于C點,頂點為D,一次函數(shù)ymx3的圖象與y軸交于E點,與二次函數(shù)的對稱軸交于F點,且tanFDC

1)求a的值;

2)若四邊形DCEF為平行四邊形,求二次函數(shù)表達(dá)式.

3)在(2)的條件下設(shè)點M是線段OC上一點,連接AM,點P從點A出發(fā),先以1個單位長度/s的速度沿線段AM到達(dá)點M,再以個單位長度/s的速度沿MC到達(dá)點C,求點P到達(dá)點C所用最短時間為  s(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)ykx+1y=﹣k≠0)的圖象大致是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線y=﹣x+by軸于點A,交x軸于點B,SAOB

1)求b的值;

2)點C以每秒1個單位長度的速度從O點出發(fā)沿x軸向點B運(yùn)動,點D以每秒2個單位長度的速度從A點出發(fā)沿y軸向點O運(yùn)動,C,D兩點同時出發(fā),當(dāng)點D運(yùn)動到點O時,C,D兩點同時停止運(yùn)動.連接CD,設(shè)點C的運(yùn)動時間為t秒,CDO的面積為S,求St的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

3)在(2)條件下,過點CCECDAB于點E,過點DDFx軸交AB于點F,過點FFHCE,垂足為H.在CH上取點M,使得MHHE833,連接FM,若∠FMHFEH,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】人在運(yùn)動時的心跳速率通常和人的年齡有關(guān).如果用表示一個人的年齡,用表示正常情況下這個人在運(yùn)動時所能承受的每分心跳的最高次數(shù),那么

1)一個45歲的人運(yùn)動時10秒心跳的次數(shù)為22次,他__________(填“有”或“無”)危險;

2)即將參加中考的兩名同學(xué)的對話:甲同學(xué):“我正常情況下在運(yùn)動時所能承受的每分心跳的最高次數(shù)是164次”,乙同學(xué):“我正常情況下在運(yùn)動時所能承受的每分心跳的最高次數(shù)才156次”.請你判斷甲乙兩名同學(xué)誰的說法是錯誤的?并說明理由.

3)若一個人的年齡由變?yōu)?/span>為正整數(shù)),發(fā)現(xiàn)正常情況下這個人在運(yùn)動時所能承受的每分心跳的最高次數(shù)減少了12,用列方程的方法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,為直線上一動點(不與重合).以為邊向右側(cè)作正方形,連結(jié)

(猜想)如圖①,當(dāng)點在線段上時,直接寫出、三條線段的數(shù)量關(guān)系.

(探究)如圖②,當(dāng)點在線段的延長線上時,判斷、三條線段的數(shù)量關(guān)系,并說明理由.

(應(yīng)用)如圖③,當(dāng)點在線段的反向延長線上時,點、分別在直線兩側(cè),、交點為點連結(jié),若,,則    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)一定要講究方法,比如有效的預(yù)習(xí)可大幅提高聽課效率.九年級(1)班學(xué)習(xí)興趣小組為了了解全校九年級學(xué)生的預(yù)習(xí)情況,對該校九年級學(xué)生每天的課前預(yù)習(xí)時間(單位:)進(jìn)行了抽樣調(diào)查.并將抽查得到的數(shù)據(jù)分成5組,下面是未完成的頻數(shù)、頓率分布表和頻數(shù)分布扇形圖.

組別

課前預(yù)習(xí)時間

頻數(shù)(人數(shù))

頻率

1

2

2

0.10

3

16

0.32

4

5

3

請根據(jù)圖表中的信息,回答下列問題:

1)本次調(diào)查的樣本容量為 ,表中的 , , ;

2)試計算第4組人數(shù)所對應(yīng)的扇形圓心角的度數(shù);

3)該校九年級其有1000名學(xué)生,請估計這些學(xué)生中每天課前預(yù)習(xí)時間不少于的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在直線上,過點,且,點在射線上(點不與點重合),且滿足,,交于點,過點于點.設(shè)

1)用含的代數(shù)式表示的長;

2)①線段的長是________;

②線段的長是_________;(用含的代數(shù)式表示)

3)當(dāng)為何值時,有最小值?并求出這個最小值.

查看答案和解析>>

同步練習(xí)冊答案