【題目】如圖,在△ABC中,∠BAC的角平分線AD交BC于E,交△ABC的外接圓⊙O于D.
(1)求證:△ABE∽△ADC;
(2)請連接BD,OB,OC,OD,且OD交BC于點F,若點F恰好是OD的中點.求證:四邊形OBDC是菱形.

【答案】
(1)證明:∵∠BAC的角平分線AD,

∴∠BAE=∠CAD,

∵∠ABC=∠ADC,

∴△ABE∽△ADC


(2)證明:∵∠BAD=∠CAD,

∵OD為半徑,

∴DO⊥BC(垂徑定理),

∵F為OD的中點,

∴OB=BD,OC=CD,

∵OB=OC,

∴OB=BD=CD=OC,

∴四邊形OBDC是菱形.


【解析】(1)根據(jù)圓周角定理求出∠B=∠D,根據(jù)相似三角形的判定推出即可;(2)根據(jù)垂徑定理求出OD⊥BC,根據(jù)線段垂直平分線性質得出OB=BD,OC=CD,根據(jù)菱形的判定推出即可.
【考點精析】掌握菱形的判定方法和圓周角定理是解答本題的根本,需要知道任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】【問題情境】

△ABC中,AB=AC,點PBC所在直線上的任一點,過點PPD⊥AB,PE⊥AC,垂足分別為D、E,過點CCF⊥AB,垂足為F.當PBC邊上時(如圖1),求證:PD+PE=CF

證明思路是:如圖2,連接AP,由△ABP△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.(不要證明)

【變式探究】

當點PCB延長線上時,其余條件不變(如圖3.試探索PDPE、CF之間的數(shù)量關系并說明理由.

請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:

【結論運用】

如圖4,將長方形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點PPG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8CF=3,求PG+PH的值;

【遷移拓展】

在直角坐標系中.直線l1y=與直線l2y=2x+4相交于點A,直線l1、l2x軸分別交于點B、點C.P是直線l2上一個動點,若點P到直線l1的距離為1.求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列結論:w

①若a+b+c=0,且abc≠0,則方程a+bx+c=0的解是x=1;

②若a(x﹣1)=b(x﹣1)有唯一的解,則a≠b;

③若b=2a,則關于x的方程ax+b=0(a≠0)的解為x=﹣;

④若a+b+c=1,且a≠0,則x=1一定是方程ax+b+c=1的解;

其中結論正確個數(shù)有( )

A.4個 B.3個 C.2個 D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,邊長為10,A=60°,順次連接菱形ABCD各邊中點,可得四邊形A1B1C1D1;順次連結四邊形A1B1C1D1各邊中點,可得四邊形A2B2C2D2;順次連結四邊形A2B2C2D2各邊中點,可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去…則四邊形A2B2C2D2的周長是 ;四邊形A2015B2015C2015D2015的周長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BD⊥AC,AB=6,AC=5 ,∠A=30°.
①求BD和AD的長;
②求tanC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設一列數(shù)中任意三個相鄰的數(shù)之和都是22,已知,,,那么=________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】4張寫著以下數(shù)字的卡片,請按要求抽出卡片,完成下列各題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字之積最大,最大值是________.

(2)從中取出2張卡片,使這2張卡片上數(shù)字之差最小,最小值是________.

(3)從中取出4張卡片,將這4個數(shù)字進行加、減、乘、除或乘方等混合運算,使結果為24,請寫出一種符合要求的運算式子________.(注:4個數(shù)字都必須用到且只能用一次.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A在數(shù)軸上對應的數(shù)為a,點B對應的數(shù)為b,且|a+4|+(b﹣1)2=0,A、B之間的距離記作|AB|,定義:|AB|=|a﹣b|.

(1)求線段AB的長|AB|;

(2)設點P在數(shù)軸上對應的數(shù)為x,當|PA|﹣|PB|=2時,求x的值;

(3)若點PA的左側,M、N分別是PA、PB的中點,當PA的左側移動時,下列兩個結論:

①|PM|+|PN|的值不變;②|PN|﹣|PM|的值不變,其中只有一個結論正確,請判斷出正確結論,并求其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是函數(shù)y=與函數(shù)y=在第一象限內的圖象,點P是y=的圖象上一動點,PAx軸于點A,交y=的圖象于點C,PBy軸于點B,交y=的圖象于點D.

(1)求證:D是BP的中點;

(2)求四邊形ODPC的面積.

查看答案和解析>>

同步練習冊答案