【題目】某校九年級甲、乙兩班舉行電腦漢字輸入比賽,兩個班能參加比賽的學生每分鐘輸入漢字的個數(shù)經(jīng)統(tǒng)計和計算后結(jié)果如下表

有一位同學根據(jù)上面表格得出如下結(jié)論

①甲、乙兩班學生的平均水平相同;②乙班優(yōu)秀人數(shù)比甲班優(yōu)秀人數(shù)多(每分鐘輸入漢字達150個以上為優(yōu)秀)③甲班學生比賽成績的波動比乙班學生比賽成績的波動大

上述結(jié)論正確的是_______(填序號)

【答案】①②③.

【解析】根據(jù)平均數(shù)、方差和中位數(shù)的意義,可知:甲乙的平均數(shù)相同,所以①甲、乙兩班學生的平均水平相同.根據(jù)中位數(shù)可知乙的中位數(shù)大,所以②乙班優(yōu)秀的人數(shù)比甲班優(yōu)秀的人數(shù)多.根據(jù)方差數(shù)據(jù)可知,方差越大波動越大,反之越小,所以甲班學生比賽成績的波動比乙班學生比賽成績的波動大.
故答案為:①②③.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下表為深圳市居民每月用水收費標準,(單位:元/m3).

用水量

單價

x≤22

a

剩余部分

a+1.1


(1)某用戶用水10立方米,共交水費23元,求a的值;
(2)在(1)的前提下,該用戶5月份交水費71元,請問該用戶用水多少立方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c的圖象交x軸于點A﹣40)和點B,交y軸于點C0,4).

1)求這個二次函數(shù)的表達式;

2)在拋物線的對稱軸上是否存在一點P,使得的值最大?若存在,求出P點坐標;若不存在,請說明理由.

3)在平面直角坐標系內(nèi),是否存在點Q,使A,B,C,Q四點構(gòu)成平行四邊形?若存在,直接寫出點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,AD=6㎝,AB=3㎝。在直角梯形中EFGH中 ,EH∥FG ,∠EFG=,∠G=,EH=6㎝,HG=3㎝。B、C、F、G同在一條直線上。當F、C兩點重合時,矩形ABCD1㎝/秒的速度沿直線按箭頭所示的方向勻速平移, 秒后,矩形ABCD與梯形EFGH重合部分的面積為㎝。按要求回答下列各題(不要求寫出解題過程):

1)當時, cm2(如圖);

時, cm2(如圖④);

2)在下列各種情況下,分別用表示

如圖,當時, cm2

如圖,當時, cm2;

如圖,當時, cm2;

如圖⑤,當時, cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1=kx+n(k0)與二次函數(shù)y2=ax2+bx+c(a0)的圖象相交于A(﹣1,5)、B(9,2)兩點,則關(guān)于x的不等式kx+nax2+bx+c的解集為(  )

A. ﹣1x9 B. ﹣1x9 C. ﹣1x9 D. x﹣1x9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,∠DAC的平分線交DC于點E,若點P,Q分別是AD和AE上的動點,則DQ+PQ的最小值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運動形式屬于旋轉(zhuǎn)的是( 。
A.鐘表上鐘擺的擺動
B.投籃過程中球的運動
C.“神十”火箭升空的運動
D.傳動帶上物體位置的變化

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+3上的三點,則y1,y2,y3的大小關(guān)系為( 。

A. y1>y2>y3 B. y1>y3>y2 C. y3>y2>y1 D. y3>y1>y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程

(1)

(2) x2+4x-21=0

(3)

(4)

查看答案和解析>>

同步練習冊答案