【題目】如圖,點(diǎn)為線段上一點(diǎn), ,過(guò)點(diǎn)作直線,,在線段上有一點(diǎn),使得,連接,若動(dòng)點(diǎn)從點(diǎn)開(kāi)始以每秒個(gè)單位的速度按的路徑運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)出發(fā)的時(shí)間為.

1)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),若,則的值為_________;

2)求當(dāng)為何值時(shí),為等腰三角形;

3)若點(diǎn)內(nèi)部射線上一點(diǎn),當(dāng)為等腰直角三角形,求線段的長(zhǎng).

【答案】12;(2;(3(或

【解析】

(1)先求OB的值,再有勾股定理即可求解;
(2)根據(jù)題意分當(dāng)POA上時(shí)和PAB上時(shí)進(jìn)行討論即可;
(3) 過(guò),,證,由OD的長(zhǎng)求出GM的長(zhǎng),再由勾股定理進(jìn)行解答即可.

解:(1)∵,

OB=3,

∴當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),若時(shí),

OP==2

的值為.

2)如圖,當(dāng)P再OA上,時(shí),為等腰三角形,

若點(diǎn)上,則,

解得

如圖,當(dāng)PAB上,時(shí),為等腰三角形,

,

;

如圖,若點(diǎn)上,,作,則根據(jù)面積法求得,在中,由勾股定理得

,

此時(shí);

如圖,當(dāng)時(shí),為等腰三角形,

綜上所述,時(shí),為等腰三角形;

3)如圖,過(guò),

CMG=DNG,

MCG=NDG,

CG=DG,

設(shè),則,,,

所以(或

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】瑞士的一位中學(xué)教師巴爾末從光譜數(shù)據(jù),…中,成功地發(fā)現(xiàn)了其規(guī)律,從而得到了巴爾末公式,繼而打開(kāi)了光譜奧妙的大門.請(qǐng)你根據(jù)這個(gè)規(guī)律寫出第9個(gè)數(shù)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,ABBC,直線l垂直平分AC.

1)如圖1,作∠ABC的平分線交直線l于點(diǎn)D,連接AD,CD.

①補(bǔ)全圖形;

②判斷∠BAD和∠BCD的數(shù)量關(guān)系,并證明.

2)如圖2,直線l與△ABC的外角∠ABE的平分線交于點(diǎn)D,連接AD,CD.求證:∠BAD=BCD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)軸上,若要使最小,則點(diǎn)的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,矩形ABCD被對(duì)角線AC分為兩個(gè)直角三角形,AB=3,BC=6.現(xiàn)將RtADC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,點(diǎn)A旋轉(zhuǎn)后的位置為點(diǎn)E,點(diǎn)D旋轉(zhuǎn)后的位置為點(diǎn)F.以C為原點(diǎn),以BC所在直線為x軸,以過(guò)點(diǎn)C垂直于BC的直線為y軸,建立如圖②的平面直角坐標(biāo)系.

(1)求直線AE的解析式;

(2)將RtEFC沿x軸的負(fù)半軸平行移動(dòng),如圖③.設(shè)OC=x(0<x≤9),RtEFCRtABO的重疊部分面積為s;求當(dāng)x=1x=8時(shí),s的值;

(3)在(2)的條件下s是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四張撲克牌方塊2、黑桃4、黑桃5、梅花5的牌面如圖l,將撲克牌洗勻后,如圖2背面朝上放置在桌面上.小亮和小明設(shè)計(jì)的游戲規(guī)則是兩人同時(shí)抽取一張撲克牌兩張牌面數(shù)字之和為奇數(shù)時(shí),小亮獲勝;否則小明獲勝.請(qǐng)問(wèn)這個(gè)游戲規(guī)則公平嗎?并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2﹣2x+3的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn)。

(1)求點(diǎn)A、B、C的坐標(biāo);

(2)點(diǎn)Mm,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)PPQAB交拋物線于點(diǎn)Q,過(guò)點(diǎn)QQNx軸于點(diǎn)N,可得矩形PQNM.如圖,點(diǎn)P在點(diǎn)Q左邊,試用含m的式子表示矩形PQNM的周長(zhǎng);

(3)當(dāng)矩形PQNM的周長(zhǎng)最大時(shí),m的值是多少?并求出此時(shí)的AEM的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在半徑為6cm的⊙O中,點(diǎn)A是劣弧BC的中點(diǎn),點(diǎn)D是優(yōu)弧BC上一點(diǎn),且∠D=30°,下列四個(gè)結(jié)論:①OABC;BC=6cm;sinAOB=;④四邊形ABOC是菱形.其中正確結(jié)論的序號(hào)是( )

A. ①③ B. ①②③④ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有甲、乙兩個(gè)空調(diào)安裝隊(duì)分別為A、B兩個(gè)公司安裝空調(diào),甲安裝隊(duì)為A公司安裝66臺(tái)空調(diào),乙安裝隊(duì)為B公司安裝80臺(tái)空調(diào),乙安裝隊(duì)提前一天開(kāi)工,最后與甲安裝隊(duì)恰好同時(shí)完成安裝任務(wù).已知甲隊(duì)比乙隊(duì)平均每天多安裝2臺(tái)空調(diào),求甲、乙兩個(gè)安裝隊(duì)平均每天各安裝多少臺(tái)空調(diào).

查看答案和解析>>

同步練習(xí)冊(cè)答案