(本題滿分12分)
情境觀察:將矩形ABCD紙片沿對(duì)角線AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是 ▲ ,∠CAC′= ▲ °.
問(wèn)題探究:如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.
拓展延伸:如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H. 若AB=k AE,AC=k AF,試探究HE與HF之間的數(shù)量關(guān)系,并說(shuō)明理由.
解:情境觀察
AD(或A′D),90
問(wèn)題探究
結(jié)論:EP=FQ.
證明:∵△ABE是等腰三角形,∴AB=AE,∠BAE=90°.
∴∠BAG+∠EAP=90°.∵AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.
∵EP⊥AG,∴∠AGB=∠EPA=90°,∴Rt△ABG≌Rt△EAP. ∴AG=EP.
同理AG=FQ. ∴EP=FQ.
拓展延伸
結(jié)論: HE=HF.
理由:過(guò)點(diǎn)E作EP⊥GA,F(xiàn)Q⊥GA,垂足分別為P、Q.
∵四邊形ABME是矩形,∴∠BAE=90°,
∴∠BAG+∠EAP=90°.AG⊥BC,∴∠BAG+∠ABG=90°,
∴∠ABG=∠EAP.
解析:略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分12分)
問(wèn)題情境
已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長(zhǎng)為多少時(shí),它的周長(zhǎng)最小?最小值是多少?
數(shù)學(xué)模型
設(shè)該矩形的長(zhǎng)為x,周長(zhǎng)為y,則y與x的函數(shù)關(guān)系式為.
探索研究
⑴我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)的圖象性質(zhì).
① 填寫下表,畫(huà)出函數(shù)的圖象:
x | … | 1 | 2 | 3 | 4 | … | |||
y | … |
|
|
|
|
|
|
| … |
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(小)值時(shí),除了通過(guò)觀察圖象,還可以通過(guò)配方得到.請(qǐng)你通過(guò)配方求函數(shù)(x>0)的最小值.
解決問(wèn)題
⑵用上述方法解決“問(wèn)題情境”中的問(wèn)題,直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
x | … | 1 | 2 | 3 | 4 | … | |||
y | … | | | | | | | | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(江蘇鹽城卷)數(shù)學(xué) 題型:解答題
(本題滿分12分)
情境觀察:將矩形ABCD紙片沿對(duì)角線AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是 ▲ ,∠CAC′= ▲ °.
問(wèn)題探究:如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.
拓展延伸:如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H. 若AB= k AE,AC= k AF,試探究HE與HF之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(廣東珠海卷)數(shù)學(xué) 題型:解答題
(本題滿分12分)
情境觀察:將矩形ABCD紙片沿對(duì)角線AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是 ▲ ,∠CAC′= ▲ °.
問(wèn)題探究:如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.
拓展延伸:如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H. 若AB= k AE,AC= k AF,試探究HE與HF之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com