【題目】如圖,在等邊三角形ABC的AC,BC邊上各取一點(diǎn)P,Q,使AP=CQ,AQ,BP相交于點(diǎn)O.若BO=6,PO=2,則AP的長(zhǎng),AO的長(zhǎng)分別為__________.
【答案】4,.
【解析】
先通過(guò)條件證明△ABP≌△ACQ,得到∠ABP=∠CAQ,可證明△APO∽△BPA,得出,則AP2=OPBP,可求出AP,設(shè)OA=x,則AB=2x,在Rt△ABE中,由AE2+BE2=AB2,得出x的值即可得解.
解:解:∵△ABC是等邊三角形
∴∠BAP=∠ACQ=∠ABQ=60°,AB=AC=BC,
∵在△ABP和△ACQ中
,
∴△ABP≌△ACQ (SAS),
∴∠ABP=∠CAQ,
∵∠APO=∠BPA,
∴△APO∽△BPA,
∴,
∴AP2=OPBP,
∵BO=6,PO=2,
∴BP=8,
∴AP2=2×8=16,
∴AP=4,
∵∠BAC=60°,
∴∠BAQ+∠CAQ=60°,
∴∠BAQ+∠ABP=60°,
∵∠BOQ=∠BAQ+ABP,
∴∠BOQ=60°,
過(guò)點(diǎn)B作BE⊥OQ于點(diǎn)E,
∴∠OBE=30°,
∵OB=6,
∴OE=3,BE=3,
∵,
設(shè)OA=x,則AB=2x,
在Rt△ABE中,AE2+BE2=AB2,
∴(x+3)2+(3)2=(2x)2,
解得:x=或x=1-(舍去),
∴AO=1+.
故答案為:4,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△EDF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q.
(1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;
(2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長(zhǎng)線上時(shí),求證:△BPE∽△CEQ;
(3)在(2)的條件下,BP=2,CQ=9,則BC的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,蘭蘭站在河岸上的G點(diǎn),看見(jiàn)河里有一只小船沿垂直于岸邊的方向劃過(guò)來(lái),此時(shí),測(cè)得小船C的俯角是∠FDC=30°,若蘭蘭的眼睛與地面的距離是1.5米,BG=1米,BG平行于AC所在的直線,迎水坡的坡度i=4:3,坡高BE=8米,求小船C到岸邊的距離CA的長(zhǎng).(參考數(shù)據(jù):≈1.7,結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是☉的直徑,為☉上一點(diǎn),是半徑上一動(dòng)點(diǎn)(不與重合),過(guò)點(diǎn)作射線,分別交弦,于兩點(diǎn),過(guò)點(diǎn)的切線交射線于點(diǎn).
(1)求證:.
(2)當(dāng)是的中點(diǎn)時(shí),
①若,判斷以為頂點(diǎn)的四邊形是什么特殊四邊形,并說(shuō)明理由;
②若,且,則_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】天然生物制藥公司投資制造某藥品,先期投入了部分資金.企劃部門(mén)根據(jù)以往經(jīng)驗(yàn)發(fā)現(xiàn),生產(chǎn)銷(xiāo)售中所獲總利潤(rùn)隨天數(shù)(可以取分?jǐn)?shù))的變化圖象如下,當(dāng)總利潤(rùn)到達(dá)峰值后會(huì)逐漸下降,當(dāng)利潤(rùn)下降到萬(wàn)元時(shí)即為止損點(diǎn),則停止生產(chǎn)
(1)設(shè),求出最大利潤(rùn)是多少?
(2)在(1)的條件下,經(jīng)公司研究發(fā)現(xiàn)如果添加名工人,在工資成本增加的情況下,總利潤(rùn)關(guān)系式變?yōu)?/span>,請(qǐng)研究添加名工人后總利潤(rùn)的最大值,并給出總利潤(rùn)最大的方案中的值及生產(chǎn)天數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,折疊矩形,具體操作:①點(diǎn)為邊上一點(diǎn)(不與、重合),把沿所在的直線折疊,點(diǎn)的對(duì)稱(chēng)點(diǎn)為點(diǎn);②過(guò)點(diǎn)對(duì)折,折痕所在的直線交于點(diǎn)、點(diǎn)的對(duì)稱(chēng)點(diǎn)為點(diǎn).
(1)求證:∽.
(2)若,.
①點(diǎn)在移動(dòng)的過(guò)程中,求的最大值.
②如圖2,若點(diǎn)恰在直線上,連接,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)二次函數(shù)y=(ax-1)(x-a),其中a是常數(shù),且a≠0.
(1)當(dāng)a=2時(shí),試判斷點(diǎn)(-,-5)是否在該函數(shù)圖象上.
(2)若函數(shù)的圖象經(jīng)過(guò)點(diǎn)(1,-4),求該函數(shù)的表達(dá)式.
(3)當(dāng)-1≤x≤+1時(shí),y隨x的增大而減小,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),點(diǎn)A的橫坐標(biāo)是2,點(diǎn)B的縱坐標(biāo)是-2.
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的紙箱里有分別標(biāo)有漢字“熱”“愛(ài)”“祖”“國(guó)”的四個(gè)小球,除漢字不同之外,小球沒(méi)有任何區(qū)別,每次摸球前先搖勻再摸球.
(1)若從中任取一個(gè)球,求摸出球上的漢字剛好是“國(guó)”字的概率;
(2)小紅從中任取球,不放回,再?gòu)闹腥稳∫磺,?qǐng)用樹(shù)狀圖或列表法,求小紅取出的兩個(gè)球上的漢字恰好能組成“愛(ài)國(guó)”或“祖國(guó)”的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com