【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點E,過點E作BE的垂線交AB于點F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過點E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EH=3,求BF及AF長.
【答案】(1)證明見解析;(2)證明見解析;(3)
【解析】試題分析:(1)連接OE,由于BE是角平分線,則有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代換有∠OEB=∠CBE,那么利用內(nèi)錯角相等,兩直線平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切線;(2)連結(jié)DE,先根據(jù)AAS證明△CDE≌△HFE,再由全等三角形的對應邊相等即可得出CD=HF;(3)由(2)中CD=HF,即可求出HF的值,先求OA和OF的長度,再由AF=OA-OF求出AF的值;
試題解析:
(1)連接OE,由于BE是角平分線,則有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代換有∠OEB=∠CBE,那么利用內(nèi)錯角相等,兩直線平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切線;
(2)連結(jié)DE,先根據(jù)AAS證明△CDE≌△HFE,再由全等三角形的對應邊相等即可得出CD=HF
證明:(1)如圖,連接OE.
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∵OB=OE,
∴∠OBE=∠OEB,
∴∠OEB=∠CBE,
∴OE∥BC,
∴∠AEO=∠C=90°,
∴AC是⊙O的切線;
(2)如圖,連結(jié)DE.
∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,
∴EC=EH.
∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,
∴∠CDE=∠HFE.
在△CDE與△HFE中,
,
∴△CDE≌△HFE(AAS),
∴CD=HF.
(3)由(2)得,CD=HF.又CD=1
∴HF=1
在Rt△HFE中,EF==
∵EF⊥BE
∴∠BEF=90°
∴∠EHF=∠BEF=90°
∵∠EFH=∠BFE
∴△EHF∽△BEF
∴,即
∴BF=10
∴, ,
∴在Rt△OHE中, ,
∴在Rt△EOA中, ,
∴
∴
∴.
科目:初中數(shù)學 來源: 題型:
【題目】下列各組數(shù)中不可能是一個三角形的邊長的是( )
A.5,12,13
B.5,7,7
C.5,7,12
D.101,102,103
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長均為1,△ABC的三個頂點的位置如圖所示,將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標出了點B的對應點B′.
利用網(wǎng)格點畫圖:
(1)畫出△A′B′C′;
(2)畫出AB邊上的中線CD;
(3)畫出BC邊上的高線AE;
(4)△A′B′C′的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一人患了流感,經(jīng)過兩輪傳染后共有100人患了流感,那么每輪傳染中平均一個人傳染的人數(shù)為( )
A.8人
B.9人
C.10人
D.11人
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設(shè)直線nx+(n+1)y= (n為自然數(shù))與兩坐標軸圍成的三角形面積為Sn(n=1,2,…2014),則S1+S2+…+S2014的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,四邊形ABCD中∠BAD=α,∠BCD=β, BE、DF分別平分四邊形的外角∠MBC和∠NDC
(1)如圖1,若α+β= ,則∠MBC+∠NDC=度;
(2)如圖1,若BE與DF相交于點G,∠BGD=45°,請求出α、β所滿足的等量關(guān)系式;
(3)如圖2,若α=β,判斷BE、DF的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,將點A(﹣2,3)向右平移a個單位長度,再向下平移b個單位長度,平移后對應的點為A′,且點A和A′關(guān)于原點對稱,則a+b=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+1(a<0)的圖象過點(1,0)和(x1,0),且﹣2<x1<1,下列5個判斷中:①b<0;②b﹣a<0;③a>b﹣1;④a<﹣;⑤2a<b+,正確的是( )
A. ①③ B. ①②③ C. ①②③⑤ D. ①③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com