(2001•南京)如圖,AB是⊙O的直徑,P在AB的延長(zhǎng)線上,PD與⊙O相切于D,C在⊙O上,PC=PD.
(1)求證:PC是⊙O的切線;
(2)連接AC,若AC=PC,PB=1,求⊙O的半徑.

【答案】分析:(1)要證PC是⊙O的切線,只要連接OC,OD,通過(guò)證明△OCP≌△ODP得出∠OCP=90°即可.
(2)求出∠CPA的度數(shù),運(yùn)用三角函數(shù)得出⊙O的半徑.
解答:(1)證明:連接OC,OD;
∵PD與⊙O相切于D,
∴∠PDO=90°.
∵C在⊙O上,PC=PD,OP=OP,OC=OD,
∴△OCP≌△ODP,
∴∠OCP=90°.
∴PC是⊙O的切線.

(2)解:連接AC,
∵AC=PC,
∴∠CAO=∠CPA;
∵∠PCO=90°,∠COP=2∠CAO
∴∠CPA+∠C0P=3∠CPA=90°,
∴∠CPA=30°.
∵在直角△OCP中,∠CPA=30°,
∴OC=OP,
∴OC=0.5(1+OB);
∵OC=OB,
∴OC=1,
∴⊙O的半徑為1.
點(diǎn)評(píng):本題考查了切線的判定.要證某線是圓的切線,已知此線過(guò)圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),通過(guò)切線的性質(zhì)證明.同時(shí)考查了運(yùn)用三角函數(shù)求長(zhǎng)度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《圓》(06)(解析版) 題型:解答題

(2001•南京)如圖1,在平面上,給定了半徑為r的圓O,對(duì)于任意點(diǎn)P,在射線OP上取一點(diǎn)P′,使得OP•OP′=r2,這把點(diǎn)P變?yōu)辄c(diǎn)P的變換叫做反演變換,點(diǎn)P與點(diǎn)P′叫做互為反演點(diǎn).
(1)如圖2,⊙O內(nèi)外各一點(diǎn)A和B,它們的反演點(diǎn)分別為A和B′.求證:∠A′=∠B;
(2)如果一個(gè)圖形上各點(diǎn)經(jīng)過(guò)反演變換得到的反演點(diǎn)組成另一個(gè)圖形,那么這兩個(gè)圖形叫做互為反演圖形.

①選擇:如果不經(jīng)過(guò)點(diǎn)O的直線l與⊙O相交,那么它關(guān)于⊙O的反演圖形是( )
A、一個(gè)圓;B、一條直線;C、一條線段;D、兩條射線
②填空:如果直線l與⊙O相切,那么它關(guān)于⊙O的反演圖形是______,該圖形與圓O的位置關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《圓》(01)(解析版) 題型:選擇題

(2001•南京)如圖所示,四邊形ABCD為⊙O的內(nèi)接四邊形,E為AB延長(zhǎng)線的上一點(diǎn),∠CBE=40°,則∠AOC等于( )

A.20°
B.40°
C.80°
D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年江蘇省南京市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•南京)如圖1,在平面上,給定了半徑為r的圓O,對(duì)于任意點(diǎn)P,在射線OP上取一點(diǎn)P′,使得OP•OP′=r2,這把點(diǎn)P變?yōu)辄c(diǎn)P的變換叫做反演變換,點(diǎn)P與點(diǎn)P′叫做互為反演點(diǎn).
(1)如圖2,⊙O內(nèi)外各一點(diǎn)A和B,它們的反演點(diǎn)分別為A和B′.求證:∠A′=∠B;
(2)如果一個(gè)圖形上各點(diǎn)經(jīng)過(guò)反演變換得到的反演點(diǎn)組成另一個(gè)圖形,那么這兩個(gè)圖形叫做互為反演圖形.

①選擇:如果不經(jīng)過(guò)點(diǎn)O的直線l與⊙O相交,那么它關(guān)于⊙O的反演圖形是( )
A、一個(gè)圓;B、一條直線;C、一條線段;D、兩條射線
②填空:如果直線l與⊙O相切,那么它關(guān)于⊙O的反演圖形是______,該圖形與圓O的位置關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年江蘇省南京市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2001•南京)如圖,在△ABC中,AB=AC,∠BAC=120°,⊙A與BC相切于點(diǎn)D,與AB相交于點(diǎn)E,則∠ADE等于    度.

查看答案和解析>>

同步練習(xí)冊(cè)答案