在Rt△ABC中,∠C=90°,且tanA=3,則cosB的值為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
D
分析:本題可以利用銳角三角函數(shù)的定義求解,也可以利用互為余角的三角函數(shù)關系式求解.
解答:解法1:利用三角函數(shù)的定義及勾股定理求解.
∵在Rt△ABC中,∠C=90°,tanA=3,
設a=3x,b=x,則c=x,
∴cosB==
故選D.
解法2:利用同角、互為余角的三角函數(shù)關系式求解.
又∵tanA==3,
∴sinA=3cosA.
又sin2A+cos2A=1,
∴cosA=
∵A、B互為余角,
∴cosB=sin(90°-B)=sinA=
故選D.
點評:求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,通過設參數(shù)的方法求三角函數(shù)值,或者利用同角(或余角)的三角函數(shù)關系式求三角函數(shù)值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點,以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點D是AB的中點,點O是△ABC的重心,則OD的長為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習冊答案