【題目】將邊長(zhǎng)為2的正方形OABC如圖放置,O為原點(diǎn).若∠α=15°,則點(diǎn)B的坐標(biāo)為 .
【答案】
【解析】解:連接OB,過(guò)B作BE⊥x軸于E,則∠BEO=90°,
∵四邊形OABC是正方形,
∴AB=OA=2,∠A=90°,∠BOA=45°,
由勾股定理得:OB= =2 ,
∵∠α=15°,∠BOA=45°,
∴∠BOE=45°+15°=60°,
在Rt△BOE中,BE=OB×sin60°=2 × = ,OE=OB×cos60°= ,
∴B的坐標(biāo)為(﹣ , ).
故答案為:
連接OB,過(guò)B作BE⊥x軸于E,則∠BEO=90°,根據(jù)正方形性質(zhì)得出AB=OA=2,∠A=90°,∠BOA=45°,根據(jù)勾股定理求出OB,解直角三角形求出OE、BE,即可得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,斜坡AP的坡度為1:2.4,坡長(zhǎng)AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測(cè)得該塔的塔頂B的仰角為45°,在坡頂A處測(cè)得該塔的塔頂B的仰角為76°.求:
(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,E、F分別為線段AC上的兩個(gè)點(diǎn),且DE⊥AC于點(diǎn)E,BF⊥AC于點(diǎn)F,若AB=CD,AE=CF,BD交AC于點(diǎn)M.
(1)試猜想DE與BF的關(guān)系,并證明你的結(jié)論;
(2)求證:MB=MD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn) D 為 AB的中點(diǎn).
(1)如果點(diǎn) P 在線段 BC 上以 1cm/s 的速度由點(diǎn) B 向點(diǎn) C 運(yùn)動(dòng),同時(shí),點(diǎn) Q 在線段 CA 上由點(diǎn) C 向點(diǎn) A 運(yùn)動(dòng).
①若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度相等,經(jīng)過(guò) 1 秒后,△BPD 與△CQP 是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn) Q 的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD 與△CQP 全等?
(2)若點(diǎn) Q 以②中的運(yùn)動(dòng)速度從點(diǎn) C 出發(fā),點(diǎn) P 以原來(lái)的運(yùn)動(dòng)速度從點(diǎn) B 同時(shí)出發(fā),都逆時(shí)針沿△ABC 三邊運(yùn)動(dòng),則經(jīng)過(guò) 后,點(diǎn) P 與點(diǎn) Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2m+1)x+m2﹣4=0有兩個(gè)不相等的實(shí)數(shù)根 (Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)若兩個(gè)實(shí)數(shù)根的平方和等于15,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=30°,以直角頂點(diǎn)A為圓心,AB長(zhǎng)為半徑畫弧交BC于點(diǎn)D,過(guò)D作DE⊥AC于點(diǎn)E.若DE=a,則△ABC的周長(zhǎng)用含a的代數(shù)式表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,DH⊥BC于H,交BE于G.下列結(jié)論:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正確的是
A. ①② B. ①③ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)系分別為A(-2,1),B(-1,4),C(-3,-2)
(1)以原點(diǎn)O為位似中心,位似比為1:2,在y軸的左側(cè),畫出△ABC放大后的圖形△A1B1C1 , 并直接寫出C1點(diǎn)坐標(biāo);
(2)如果點(diǎn)D(a , b)在線段AB上,請(qǐng)直接寫出經(jīng)過(guò)(1)的變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC= 度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com