【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AC上,且BD=CE,AD,BE相交于點(diǎn)F.
(1)求證:AD=BE;
(2)求∠AFE的度數(shù).

【答案】
(1)證明:∵△ABC是等邊三角形

∴AB=BC,∠ABC=∠BCA=60°,

在△ABD和△BCE中,

∴△ABD≌△BCE,

∴AD=BE.


(2)解:∵△ABD≌△BCE

∴∠BAD=∠CBE,

∵∠AFE=∠BAD+∠ABE,

∴∠AFE=∠CBE+∠ABE=∠ABC=60°.


【解析】(1)只要證明△ABD≌△BCE,即可推出AD=BE;(2)由△ABD≌△BCE推出∠BAD=∠CBE,由∠AFE=∠BAD+∠ABE,推出∠AFE=∠CBE+∠ABE=∠ABC=60°;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算與化簡(jiǎn)
(1)|﹣3|﹣( 2+(1﹣π)0;
(2)(x+2y)2+(x+2y)(x﹣2y).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=70°,AB的垂直平分線交對(duì)角線AC于點(diǎn)F,垂足為E,連接DF,則∠CDF等于(
A.55°
B.65°
C.75°
D.85°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,今年2月20日舉行了襄陽市首屆中小學(xué)生經(jīng)典誦讀大賽決賽.某中學(xué)為了選拔優(yōu)秀學(xué)生參加,廣泛開展校級(jí)“經(jīng)典誦讀”比賽活動(dòng),比賽成績(jī)?cè)u(píng)定為A,B,C,D,E五個(gè)等級(jí),該校七(1)班全體學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)該校七(1)班共有名學(xué)生;扇形統(tǒng)計(jì)圖中C等級(jí)所對(duì)應(yīng)扇形的圓心角等于度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若A等級(jí)的4名學(xué)生中有2名男生2名女生,現(xiàn)從中任意選取2名參加學(xué)校培訓(xùn)班,請(qǐng)用列表法或畫樹狀圖的方法,求出恰好選到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+ax+b的圖象與y軸交于點(diǎn)A(0,﹣2),與x軸交于點(diǎn)B(1,0)和點(diǎn)C,D(m,0)(m>2)是x軸上一點(diǎn).

(1)求二次函數(shù)的解析式;
(2)點(diǎn)E是第四象限內(nèi)的一點(diǎn),若以點(diǎn)D為直角頂點(diǎn)的Rt△CDE與以A,O,B為頂點(diǎn)的三角形相似,求點(diǎn)E坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)的條件下,拋物線上是否存在一點(diǎn)F,使得四邊形BCEF為平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對(duì)角線相交于點(diǎn)O,將線段OD繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)D的對(duì)應(yīng)點(diǎn)落在BC延長線上的點(diǎn)E處,OE交CD于H,連接DE.

(1)求證:DE⊥BC;
(2)若OE⊥CD,求證:2CEOE=CDDE;
(3)若OE⊥CD,BC=3,CE=1,求線段AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初三年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問題:
(1)在這次評(píng)價(jià)中,一共抽查了名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為度;
(3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;
(4)如果全市有6000名初三學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的初三學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線y= x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y= x2+bx+c經(jīng)過點(diǎn)B,點(diǎn)C的橫坐標(biāo)為4.

(1)請(qǐng)直接寫出拋物線的解析式;
(2)如圖2,點(diǎn)D在拋物線上,DE∥y軸交直線AB于點(diǎn)E,且四邊形DFEG為矩形,設(shè)點(diǎn)D的橫坐標(biāo)為x(0<x<4),矩形DFEG的周長為l,求l與x的函數(shù)關(guān)系式以及l(fā)的最大值;

(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1 , 點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1 . 若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x﹣2交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y=ax2+bx+c的頂點(diǎn)為A,且經(jīng)過點(diǎn)B.
(1)求該拋物線的解析式;
(2)若點(diǎn)C(m,﹣ )在拋物線上,求m的值.
(3)根據(jù)圖象直接寫出一次函數(shù)值大于二次函數(shù)值時(shí)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案