【題目】在數(shù)學(xué)探究活動(dòng)中,敏敏進(jìn)行了如下操作:如圖,將四邊形紙片沿過(guò)點(diǎn)的直線折疊,使得點(diǎn)落在上的點(diǎn)處,折痕為;再將分別沿折疊,此時(shí)點(diǎn)落在上的同一點(diǎn)處.請(qǐng)完成下列探究:

的大小為__________;

當(dāng)四邊形是平行四邊形時(shí)的值為__________

【答案】30

【解析】

1)根據(jù)折疊得到∠D+C=180°,推出AD∥BC,,進(jìn)而得到∠AQP=90°,以及∠A=180°-∠B=90°,再由折疊,得到∠DAQ=∠BAP=∠PAQ=30°即可;

2)根據(jù)題意得到DC∥AP,從而證明∠APQ=∠PQR,得到QR=PRQR=AR,結(jié)合(1)中結(jié)論,設(shè)QR=a,則AP=2a,由勾股定理表達(dá)出AB=AQ=即可解答.

解:(1)由題意可知,∠D+C=180°,

AD∥BC

由折疊可知∠AQD=∠AQR,∠CQP=∠PQR,

∴∠AQR+∠PQR=,即∠AQP=90°,

∴∠B=90°,則∠A=180°-∠B=90°

由折疊可知,∠DAQ=∠BAP=∠PAQ

∴∠DAQ=∠BAP=∠PAQ=30°,

故答案為:30;

2)若四邊形APCD為平行四邊形,則DC∥AP,

∴∠CQP=∠APQ,

由折疊可知:∠CQP=∠PQR

∠APQ=∠PQR,

QR=PR,

同理可得:QR=AR,即RAP的中點(diǎn),

由(1)可知,∠AQP=90°,∠PAQ=30°,且AB=AQ

設(shè)QR=a,則AP=2a,

QP=

AB=AQ=,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在中,

1)若

①如圖1,點(diǎn)內(nèi),求 的度數(shù);

②如圖2,點(diǎn)外,求 的度數(shù);

2)如圖3,若,點(diǎn)內(nèi),且,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線)與雙曲線交于兩點(diǎn)(點(diǎn)在第一象限),直線)與雙曲線交于,兩點(diǎn).當(dāng)這兩條直線互相垂直,且四邊形的周長(zhǎng)為時(shí),點(diǎn)的坐標(biāo)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,以為直徑的與邊,分別交于,兩點(diǎn),過(guò)點(diǎn)于點(diǎn)

1)判斷的位置關(guān)系,并說(shuō)明理由;

2)求證:的中點(diǎn);

3)若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(教材呈現(xiàn))

下圖是華師版九年級(jí)上冊(cè)數(shù)學(xué)教材第79頁(yè)的部分內(nèi)容

如圖,矩形的對(duì)角線、相交于點(diǎn)、、分別為、、的中點(diǎn),求證:四邊形是矩形

請(qǐng)根據(jù)教材內(nèi)容,結(jié)合圖①,寫出完整的解題過(guò)程

(結(jié)論應(yīng)用)

1)在圖①中,若,,則四邊形的面積為__________;

2)如圖②,在菱形中,,是其內(nèi)任意一點(diǎn),連接與菱形各頂點(diǎn),四邊形的頂點(diǎn)、、分別在、上,,,且,若的面積和為,則菱形的周長(zhǎng)為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn),是第一象限角平分線上的兩點(diǎn),點(diǎn)的縱坐標(biāo)為1,且,在軸上取一點(diǎn),連接,,,使得四邊形的周長(zhǎng)最小,這個(gè)最小周長(zhǎng)的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(﹣6,0),點(diǎn)B0,8),點(diǎn)C在線段AB上,點(diǎn)Dy軸上,將∠ABO沿直線CD翻折,使點(diǎn)B與點(diǎn)A重合.若點(diǎn)E在線段CD延長(zhǎng)線上,且CE5,點(diǎn)My軸上,點(diǎn)N在坐標(biāo)平面內(nèi),如果以點(diǎn)C、EM、N為頂點(diǎn)的四邊形是菱形,那么點(diǎn)N有( 。

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量某條河的對(duì)岸邊C,D兩點(diǎn)間的距離,在河的岸邊與平行的直線上取兩點(diǎn)A,B,測(cè)得,量得長(zhǎng)為70米.求C,D兩點(diǎn)間的距離(參考數(shù)據(jù):,).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AB是直線y=x+1的一部分,其中點(diǎn)Ay軸上,點(diǎn)B橫坐標(biāo)為2,曲線BC是雙曲線)的一部分,由點(diǎn)C開(kāi)始不斷重復(fù)“ABC”的過(guò)程,形成一組波浪線,點(diǎn)P(2019,m)Q(2025n)均在該波浪線上,Gx軸上一動(dòng)點(diǎn),則PQG周長(zhǎng)的最小值為(

A.16B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案