【題目】如圖,四邊形中,,,,是邊的中點(diǎn),連接延長與的延長線相交于點(diǎn),連接.
()求證:四邊形是平行四邊形.
()已知,求四邊形的面積.
【答案】()證明見解析;() .
【解析】試題分析:
(1)由可證得,由此可得,結(jié)合,,可證得≌,即可得到結(jié)合DE=CE即可證得四邊形BDFC是平行四邊形;
(2)過點(diǎn)D作DH⊥BC于點(diǎn)H,易證四邊形ADHB是矩形,從而可得BH=AD=1,結(jié)合BC=3可得CH=2,在Rt△DHC中結(jié)合CD=BC=3即可求得DH=,這樣即可求得四邊形BDFC的面積了.
試題解析:
()∵,
∴,
∴,
又∵,,
∴≌,
∴,
又∵,
∴四邊形是平行四邊形.
()過作于,
∴∠DHB=∠A=∠ABH=90°,
∴四邊形ADHB是矩形,
∴,
∵,
∴,
在中,
∵,
∴,
∴
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是邊長為3的等邊三角形,以BC為底邊作一個(gè)頂角為120等腰△BDC.點(diǎn)M、點(diǎn)N分別是AB邊與AC邊上的點(diǎn),并且滿足∠MDN=60.
(1)如圖1,當(dāng)點(diǎn)D在△ABC外部時(shí),求證:BM+CN=MN;
(2)在(1)的條件下求△AMN的周長;
(3)當(dāng)點(diǎn)D在△ABC內(nèi)部時(shí),其它條件不變,請?jiān)趫D2中補(bǔ)全圖形,并直接寫出△AMN的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的頂點(diǎn)B,D都在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)D的坐標(biāo)為(2,6),AB平行于x軸,點(diǎn)A的坐標(biāo)為(0,3),將這個(gè)平行四邊形像左平移2個(gè)單位,再向下平移3個(gè)單位后,點(diǎn)C的坐標(biāo)為( )
A.(4,3) B.(2,3) C.(1,4) D.(2,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知方程的兩個(gè)解是和
(1)求、的值;
(2)用含有的代數(shù)式表示;
(3)若是不小于的負(fù)數(shù),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A在四邊形BCDE的外部時(shí),記∠AEB為∠1,∠ADC為∠2,則∠A、∠1與∠2的數(shù)量關(guān)系,結(jié)論正確的是( )
A. ∠1=∠2+∠A B. ∠1=2∠A+∠2
C. ∠1=2∠2+2∠A D. 2∠1=∠2+∠A
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠A=90°,點(diǎn)D、E分別在AB、AC上,DE∥BC,CF與DE的延長線垂直,垂足為F.
(1)求證:∠B=∠ECF ;
(2)若∠B=55°,求∠CED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王霞和爸爸、媽媽到人民公園游玩,回到家后,她利用平面直角坐標(biāo)系畫出了公園的景區(qū)地圖,如圖所示.可是她忘記了在圖中標(biāo)出原點(diǎn)和x軸.y軸.只知道游樂園D的坐標(biāo)為(2,﹣2),請你幫她畫出坐標(biāo)系,并寫出其他各景點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知長方形,為坐標(biāo)原點(diǎn),點(diǎn)坐標(biāo)為,點(diǎn)在軸的正半軸上,點(diǎn)在軸的正半軸上,是線段上的動(dòng)點(diǎn),設(shè),已知點(diǎn)在第一象限且是直線上一點(diǎn),若是等腰直角三角形.
()求點(diǎn)的坐標(biāo)并寫出解題過程.
()直角向下平移個(gè)單位后,在該直線上是否存在點(diǎn),使是等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( 。
A. ①和② B. ②和③ C. ①和③ D. ②和④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com