【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為 時(shí),四邊形AMDN是矩形;②當(dāng)AM的值為 時(shí),四邊形AMDN是菱形。
【答案】(1)見解析(2)①1;②2
【解析】
試題(1)利用菱形的性質(zhì)和已知條件可證明四邊形AMDN的對(duì)邊平行且相等即可;
(2)①有(1)可知四邊形AMDN是平行四邊形,利用有一個(gè)角為直角的平行四邊形為矩形即∠DMA=90°,所以AM=AD=1時(shí)即可;
②當(dāng)平行四邊形AMND的鄰邊AM=DM時(shí),四邊形為菱形,利用已知條件再證明三角形AMD是等邊三角形即可.
試題解析:(1)證明:∵四邊形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME,
又∵點(diǎn)E是AD邊的中點(diǎn),
∴DE=AE,
∴△NDE≌△MAE,
∴ND=MA,
∴四邊形AMDN是平行四邊形;
(2)解:①當(dāng)AM的值為1時(shí),四邊形AMDN是矩形.理由如下:
∵AM=1=AD,
∴∠ADM=30°
∵∠DAM=60°,
∴∠AMD=90°,
∴平行四邊形AMDN是矩形;
②當(dāng)AM的值為2時(shí),四邊形AMDN是菱形.理由如下:
∵AM=2,
∴AM=AD=2,
∴△AMD是等邊三角形,
∴AM=DM,
∴平行四邊形AMDN是菱形,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)a使關(guān)于x的不等式組 無(wú)解,且使關(guān)于x的分式方程 ﹣ =﹣3有正整數(shù)解,則滿足條件的a的值之積為( )
A.28
B.﹣4
C.4
D.﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品經(jīng)銷店欲購(gòu)進(jìn)A、B兩種紀(jì)念品,用160元購(gòu)進(jìn)的A種紀(jì)念品與用240元購(gòu)進(jìn)的B種紀(jì)念品的數(shù)量相同,每件B種紀(jì)念品的進(jìn)價(jià)比A種紀(jì)念品的進(jìn)價(jià)貴10元.
(1)求A、B兩種紀(jì)念品每件的進(jìn)價(jià)分別為多少元?
(2)若該商店A種紀(jì)念品每件售價(jià)24元,B種紀(jì)念品每件售價(jià)35元,這兩種紀(jì)念品共購(gòu)進(jìn)1 000件,這兩種紀(jì)念品全部售出后總獲利不低于4 900元,求A種紀(jì)念品最多購(gòu)進(jìn)多少件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,對(duì)角線BD=12cm,AC=16cm,AC,BD相交于點(diǎn)O,若E,F(xiàn)是AC上兩動(dòng)點(diǎn),分別從A,C兩點(diǎn)以相同的速度向C、A運(yùn)動(dòng),其速度為0.5cm/s.
(1)當(dāng)E與F不重合時(shí),四邊形DEBF是平行四邊形嗎?說(shuō)明理由;
(2)點(diǎn) E,F(xiàn)在AC上運(yùn)動(dòng)過(guò)程中,以D、E、B、F為頂點(diǎn)的四邊形是否可能為矩形?如能,求出此時(shí)的運(yùn)動(dòng)時(shí)間t的值;如不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,BC>AC,動(dòng)點(diǎn)D繞△ABC的頂點(diǎn)A逆時(shí)針旋轉(zhuǎn),且AD=BC,連接DC.過(guò)AB,DC的中點(diǎn)E,F作直線,直線EF與直線AD,BC分別相交于點(diǎn)M,N.
(1)如圖1,當(dāng)點(diǎn)D旋轉(zhuǎn)到BC的延長(zhǎng)線上時(shí),點(diǎn)N恰好與點(diǎn)F重合,取AC的中點(diǎn)H,連接HE,HF,根據(jù)三角形中位線定理和平行線的性質(zhì),可得∠AMF與∠ENB有何數(shù)量關(guān)系?(不需證明).
(2)當(dāng)點(diǎn)D旋轉(zhuǎn)到圖2或圖3中的位置時(shí),∠AMF與∠ENB有何數(shù)量關(guān)系?請(qǐng)分別寫出猜想,并任選一種情況證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AD∥BC,E,F分別在線段AB,CD上,∠ADE=∠FBC,判斷直線DE與BF的位置關(guān)系,以下是解答過(guò)程,請(qǐng)補(bǔ)充完整,其中括號(hào)里填依據(jù).
解:DE∥BF.
理由如下:延長(zhǎng)DE交CB延長(zhǎng)線于H點(diǎn),
因?yàn)?/span>AD∥BC(__________).
所以∠ADE=∠H(__________).
又因?yàn)椤?/span>ADE=∠FBC(已知),
所以______=______(________).
所以DE∥BF(___________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,△ABC,∠ACB=90°,∠B=2∠A.
(1)用直尺和圓規(guī)作△ABC的角平分線BD,保留作圖痕跡;
(2)在(1)的基礎(chǔ)上,求∠ADB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程 的解為非正數(shù),且關(guān)于x的不等式組 無(wú)解,那么滿足條件的所有整數(shù)a的和是( )
A.﹣19
B.﹣15
C.﹣13
D.﹣9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時(shí)出發(fā)勻速相向而行,大樓C位于AB之間,甲與乙相遇在AC中點(diǎn)處,然后兩車立即掉頭,以原速原路返回,直到各自回到出發(fā)點(diǎn).設(shè)甲、乙兩車距大樓C的距離之和為y(千米),甲車離開A地的時(shí)間為t(小時(shí)),y與t的函數(shù)圖象所示,則第21小時(shí)時(shí),甲乙兩車之間的距離為千米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com