【題目】某工程隊(duì)承接一鐵路工程,在挖掘一條500米長(zhǎng)的隧道時(shí),為了盡快完成,實(shí)際施工時(shí)每天挖掘的長(zhǎng)度是原計(jì)劃的1.5倍,結(jié)果提前了25天完成了其中300米的隧道挖掘任務(wù).

(1)求實(shí)際每天挖掘多少米?

(2)由于氣候等原因,需要進(jìn)一步縮短工期,要求完成整條隧道不超過70天,那么為了完成剩下的任務(wù),在實(shí)際每天挖掘長(zhǎng)度的基礎(chǔ)上,至少每天還應(yīng)多挖掘多少米?

【答案】1)實(shí)際每天挖掘6米;(2)每天還應(yīng)多挖掘4米.

【解析】

(1)設(shè)原計(jì)劃每天挖掘x米,則實(shí)際每天挖掘1.5x米,根據(jù)結(jié)果提前了25天完成了其中300米的隧道挖掘任務(wù),列方程求解;

(2)設(shè)每天還應(yīng)多挖掘y米.根據(jù)完成該項(xiàng)工程的工期不超過70天,列不等式進(jìn)行分析.

解:(1)設(shè)原計(jì)劃每天挖掘x米,則實(shí)際每天挖掘1.5x米,

根據(jù)題意得:,

解得x4

經(jīng)檢驗(yàn),x4是原分式方程的解,且符合題意,

1.5x6

答:實(shí)際每天挖掘6米.

(2)設(shè)每天還應(yīng)多挖掘y米,

由題意,得,

解得y≥4

答:每天還應(yīng)多挖掘4米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)E是矩形ABCD的邊AD上一點(diǎn),BEADAE8,現(xiàn)有甲乙二人同時(shí)從E點(diǎn)出發(fā),分別沿EC、ED方向前進(jìn),甲的速度是乙的倍,甲到達(dá)點(diǎn)目的地C點(diǎn)的同時(shí)乙恰巧到達(dá)終點(diǎn)D處.

1)求tanECD的值

2)求線段ABBC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于點(diǎn)兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn),點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),過軸,垂足為,交直線于點(diǎn)

1)直接寫出,三點(diǎn)的坐標(biāo);

2)若以,,,為頂點(diǎn)的四邊形是平行四邊形,求此時(shí)點(diǎn)的坐標(biāo);

3)當(dāng)點(diǎn)位于直線下方的拋物線上時(shí),過點(diǎn)于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為的面積為,求的函數(shù)關(guān)系式,并求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C地在B地的正東方向,因有大山阻隔,由B地到C地需繞行A地,已知A地位于B地北偏東67°方向,距離B520km,C地位于A地南偏東30°方向,若打通穿山隧道,建成兩地直達(dá)高鐵,求建成高鐵后從B地前往C地的路程.,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為3,E是邊BC上一點(diǎn),BE1,將△ABE,△ADF分別沿折痕AEAF向內(nèi)折疊,點(diǎn)B,D在點(diǎn)G處重合,過點(diǎn)EEHAE,交AF的延長(zhǎng)線于H,則線段FH的長(zhǎng)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩個(gè)等腰RtADE、RtABC如圖放置在一起,其中∠DAE=∠ABC90°.點(diǎn)EAB上,ACDE交于點(diǎn)H,連接BH、CE,且∠BCE15°,下列結(jié)論:①AC垂直平分DE;②△CDE為等邊三角形;③tanBCD;④;正確的個(gè)數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C的中點(diǎn),連接AC并延長(zhǎng)至點(diǎn)D,使CDAC,點(diǎn)EOB上一點(diǎn),且,CE的延長(zhǎng)線交DB的延長(zhǎng)線于點(diǎn)FAF交⊙O于點(diǎn)H,連接BH

1)求證:BD是⊙O的切線;(2)當(dāng)OB2時(shí),求BH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC和△EFG是兩塊完全重合的等邊三角形紙片,(如圖①所示)OAB(EF)的中點(diǎn),△ABC不動(dòng),將△EFGO點(diǎn)順時(shí)針轉(zhuǎn)α﹝0°<α120°﹞角.

1)試分別說明α為多少度時(shí),點(diǎn)F在△ABC外部、BC上、內(nèi)部(不證明)?

2)當(dāng)點(diǎn)F不在BC上時(shí),在圖②、圖③兩種情況下(設(shè)EF或延長(zhǎng)線與BC交于P,EGCA或延長(zhǎng)線交于Q),分別寫出OPOQ的數(shù)量關(guān)系,并將圖③情況給予說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實(shí)“綠水青山就是金山銀山”的發(fā)展理念,某縣政府部門決定,招標(biāo)一工程隊(duì)負(fù)責(zé)完成一座水庫(kù)的土方施工任務(wù).該工程隊(duì)有AB兩種型號(hào)的挖掘機(jī),已知1臺(tái)A型和2臺(tái)B型挖掘機(jī)同時(shí)施工1小時(shí)共挖土80立方米,2臺(tái)A型和3臺(tái)B型挖掘機(jī)同時(shí)施工1小時(shí)共挖土140立方米.每臺(tái)A型挖掘機(jī)一個(gè)小時(shí)的施工費(fèi)用是350元,每臺(tái)B型挖掘機(jī)一個(gè)小時(shí)的施工費(fèi)用是200元.

1)分別求每臺(tái)A型,B型挖掘機(jī)一小時(shí)各挖土多少立方米?

2)若A型和B型挖掘機(jī)共10臺(tái)同時(shí)施工4小時(shí),至少完成1360立方米的挖土量,且總費(fèi)用不超過14000元.問施工時(shí)有哪幾種調(diào)配方案?且指出哪種調(diào)配方案的施工費(fèi)用最低,最低費(fèi)用多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案