【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線l與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.
(1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
(2)P是線段AC上的一個動點(diǎn),過P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),求線段PE長度的最大值;
(3)點(diǎn)G拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由.
【答案】
(1)
解:令y=0,解得x1=﹣1或x2=3
∴A(﹣1,0)B(3,0)
將C點(diǎn)的橫坐標(biāo)x=2代入y=x2﹣2x﹣3得y=﹣3
∴C(2,﹣3)
∴直線AC的函數(shù)解析式是y=﹣x﹣1
(2)
解:設(shè)P點(diǎn)的橫坐標(biāo)為x(﹣1≤x≤2)
則P、E的坐標(biāo)分別為:P(x,﹣x﹣1)
E(x,x2﹣2x﹣3)
∵P點(diǎn)在E點(diǎn)的上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2=﹣(x﹣ )2+ ,
∴當(dāng) 時,PE的最大值=
(3)
解:存在4個這樣的點(diǎn)F,分別是F1(1,0),F(xiàn)2(﹣3,0),F(xiàn)3(4+ ,0),F(xiàn)4(4﹣ ,0).
①如圖,連接C與拋物線和y軸的交點(diǎn),那么CG∥x軸,此時AF=CG=2,因此F點(diǎn)的坐標(biāo)是(﹣3,0);
②如圖,AF=CG=2,A點(diǎn)的坐標(biāo)為(﹣1,0),因此F點(diǎn)的坐標(biāo)為(1,0);
③如圖,此時C,G兩點(diǎn)的縱坐標(biāo)互為相反數(shù),因此G點(diǎn)的縱坐標(biāo)為3,代入拋物線中即可得出G點(diǎn)的坐標(biāo)為(1+ ,3),由于直線GF的斜率與直線AC的相同,因此可設(shè)直線GF的解析式為y=﹣x+h,將G點(diǎn)代入后可得出直線的解析式為y=﹣x+4+ .因此直線GF與x軸的交點(diǎn)F的坐標(biāo)為(4+ ,0);
④如圖,同③可求出F的坐標(biāo)為(4﹣ ,0).
綜合四種情況可得出,存在4個符合條件的F點(diǎn)
【解析】(1)因為拋物線與x軸相交,所以可令y=0,解出A、B的坐標(biāo).再根據(jù)C點(diǎn)在拋物線上,C點(diǎn)的橫坐標(biāo)為2,代入拋物線中即可得出C點(diǎn)的坐標(biāo).再根據(jù)兩點(diǎn)式方程即可解出AC的函數(shù)表達(dá)式;(2)根據(jù)P點(diǎn)在AC上可設(shè)出P點(diǎn)的坐標(biāo).E點(diǎn)坐標(biāo)可根據(jù)已知的拋物線求得.因為PE都在垂直于x軸的直線上,所以兩點(diǎn)之間的距離為yp﹣yE , 列出方程后結(jié)合二次函數(shù)的性質(zhì)即可得出答案;(3)存在四個這樣的點(diǎn).
①連接C與拋物線和y軸的交點(diǎn),那么CG∥x軸,此時AF=CG=2,因此F點(diǎn)的坐標(biāo)是(﹣3,0);
②AF=CG=2,A點(diǎn)的坐標(biāo)為(﹣1,0),因此F點(diǎn)的坐標(biāo)為(1,0);
③此時C,G兩點(diǎn)的縱坐標(biāo)關(guān)于x軸對稱,因此G點(diǎn)的縱坐標(biāo)為3,代入拋物線中即可得出G點(diǎn)的坐標(biāo)為(1+ ,3),由于直線GF的斜率與直線AC的相同,因此可設(shè)直線GF的解析式為y=﹣x+h,將G點(diǎn)代入后可得出直線的解析式為y=﹣x+7.因此直線GF與x軸的交點(diǎn)F的坐標(biāo)為(4+ ,0);
④如圖,同③可求出F的坐標(biāo)為(4﹣ ,0);
綜合四種情況可得出,存在4個符合條件的F點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛警車在高速公路的A處加滿油,以每小時60千米的速度勻速行駛.已知警車一次加滿油后,油箱內(nèi)的余油量y(升)與行駛時間x(小時)的函數(shù)關(guān)系的圖象如圖所示的直線l上的一部分.
(1)求直線l的函數(shù)關(guān)系式;
(2)如果警車要回到A處,且要求警車中的余油量不能少于10升,那么警車可以行駛到離A處的最遠(yuǎn)距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)2x2+3=7x;
(2)(x+4)2=5(x+4);
(3)x2﹣5x+1=0(用配方法);
(4)2x2﹣2 x﹣5=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為1個單位長度的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,△ABC的頂點(diǎn)都在格點(diǎn)上,請解答下列問題:
(1)作出△ABC向左平移4個單位長度后得到的△A1B1C1,并寫出點(diǎn)C1的坐標(biāo);
(2)將△A1B1C1繞原點(diǎn)O逆時針旋轉(zhuǎn)90°得到△A2B2C2,請畫出旋轉(zhuǎn)后的△A2B2C2,并寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】杭州某網(wǎng)站調(diào)查,2014年網(wǎng)民們最關(guān)注的熱點(diǎn)話題分別有:消費(fèi)、教育、環(huán)保、反腐及其它共五類.根據(jù)調(diào)查的部分相關(guān)數(shù)據(jù),繪制的統(tǒng)計圖表如下:
根據(jù)以上信息解答下列問題:
(1)請補(bǔ)全條形統(tǒng)計圖并在圖中標(biāo)明相應(yīng)數(shù)據(jù);
(2)若杭州市約有900萬人口,請你估計最關(guān)注環(huán)保問題的人數(shù)約為多少萬人?
(3)在這次調(diào)查中,某單位共有甲、乙、丙、丁四人最關(guān)注教育問題,現(xiàn)準(zhǔn)備從這四人中隨機(jī)抽取兩人進(jìn)行座談,則抽取的兩人恰好是甲和乙的概率為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為12,BM=CN=5,CM,DN交于點(diǎn)O.則下列結(jié)論:
①DN⊥MC;②DN垂直平分MC;③sin∠OCD= ;④S△ODC=S四邊形BMON中,
正確的有(填寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】煙臺享有“蘋果之鄉(xiāng)”的美譽(yù).甲、乙兩超市分別用3000元以相同的進(jìn)價購進(jìn)質(zhì)量相同的蘋果.甲超市銷售方案是:將蘋果按大小分類包裝銷售,其中大蘋果400千克,以進(jìn)價的2倍價格銷售,剩下的小蘋果以高于進(jìn)價10%銷售.乙超市的銷售方案是:不將蘋果按大小分類,直接包裝銷售,價格按甲超市大、小兩種蘋果售價的平均數(shù)定價.若兩超市將蘋果全部售完,其中甲超市獲利2100元(其它成本不計).問:
(1)蘋果進(jìn)價為每千克多少元?
(2)乙超市獲利多少元?并比較哪種銷售方式更合算.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com