對于結(jié)論:當(dāng)a+b=0時,a3+b3=0也成立.若將a看成a3的立方根,b看成是b3的立方根,由此得出這樣的結(jié)論:“如果兩數(shù)的立方根互為相反數(shù),那么這兩數(shù)也互為相反數(shù)”.
(1)試舉一個例子來判斷上述結(jié)論的猜測是否成立?
(2)若數(shù)學(xué)公式數(shù)學(xué)公式的值互為相反數(shù),求數(shù)學(xué)公式的值.

解:(1)答案不唯一.如,則2與-2互為相反數(shù);

(2)由已知,得(3-2x)+(x+5)=0,
解得x=8,
∴1-=1-=1-4=-3.
分析:(1)這個結(jié)論很簡單,可選擇,則2與-2互為相反數(shù)進(jìn)行說明.
(2)利用(1)的結(jié)論,列出方程(3-2x)+(x+5)=0,從而解出x的值,代入可得出答案.
點評:本題考查立方根的知識,難度一般,注意一個數(shù)的立方根有一個,它和這個數(shù)正負(fù)一致,本題的結(jié)論同學(xué)們可以記住,以后可直接運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=kx2+(2k-1)x-1與x軸交點的橫坐標(biāo)為x1,x2(x1<x2),則對于下列結(jié)論:
①當(dāng)x=-2時,y=1;
②當(dāng)x>x2時,y>0;
③方程y=kx2+(2k-1)x-1=0有兩個不相等的實數(shù)根x1,x2
④x2-x1=
1+4k2
k
,
其中所有正確的結(jié)論是
 
(只需按順序填寫序號,答案格式如:①②③④).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=kx2+(2k-1)x-1與x軸交點的橫坐標(biāo)為x1、x2(x1<x2),則對于下列結(jié)論:①當(dāng)x=-2時,y=1;②當(dāng)x>x1時,y>0;③方程kx2+(2k-1)x-1=0有兩個不相等的實數(shù)根x1、x2;④x1<-1,x2>-1;⑤x2-x1=
1+4k2
k
,其中所有正確的結(jié)論是
 
(只需填寫序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對于結(jié)論:當(dāng)a+b=0時,a3+b3=0也成立.若將a看成a3的立方根,b看成是b3的立方根,由此得出這樣的結(jié)論:“如果兩數(shù)的立方根互為相反數(shù),那么這兩數(shù)也互為相反數(shù)”.
(1)試舉一個例子來判斷上述結(jié)論的猜測是否成立?
(2)若
33-2x
3x+5
的值互為相反數(shù),求1-
2x
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=kx2+(2k-1)x-1與x軸交點的橫坐標(biāo)為x1、x2(x1<x2),則對于下列結(jié)論:①當(dāng)x=-2時,y=1;②當(dāng)x>x2時,y>0;③方程kx2+(2k-1)x-1=0有兩個不相等的實數(shù)根x1、x2;④x1<-1,x2>-1;⑤x2-x1=
1+4k2
k
,其中所有正確的結(jié)論是( 。

查看答案和解析>>

同步練習(xí)冊答案