【題目】中國(guó)古代對(duì)勾股定理有深刻的認(rèn)識(shí).
(1)三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽第一次對(duì)勾股定理加以證明:用四個(gè)全等的圖1所示的直角三角形拼成一個(gè)圖2所示的大正方形,中間空白部分是一個(gè)小正方形.如果大正方形的面積是13,小正方形的面積是1,直角三角形的兩直角邊分別為a,b,求(a+b)2的值;
(2)清朝的康熙皇帝對(duì)勾股定理也很有研究,他著有《積求勾股法》:用現(xiàn)代的數(shù)學(xué)語(yǔ)言描述就是:若直角三角形的三邊長(zhǎng)分別為3,4,5的整數(shù)倍,設(shè)其面積為S,則求其邊長(zhǎng)的方法為:第一步=m;第二步: =k;第三步:分別用3,4,5乘k,得三邊長(zhǎng).當(dāng)面積S等于150時(shí),請(qǐng)用“積求勾股法”求出這個(gè)直角三角形的三邊長(zhǎng).
【答案】(1)25;(2)這個(gè)直角三角形的三邊長(zhǎng)為15,20,25.
【解析】試題分析:(1)根據(jù)勾股定理可以求得a2+b2等于大正方形的面積,然后求四個(gè)直角三角形的面積,即可得到ab的值,然后根據(jù)(a+b)2=a2+2ab+b2即可求解;
(2)先由題中所給的條件找出字母所代表的關(guān)系,然后套用公式解題.
試題解析:(1)根據(jù)勾股定理可得a2+b2=13,
四個(gè)直角三角形的面積為ab×4=13-1=12,即2ab=12,
則(a+b)2=a2+2ab+b2=13+12=25,即(a+b)2=25;
(2)當(dāng)S=150時(shí),k==5,
所以三邊長(zhǎng)分別為:3×5=15,4×5=20,5×5=25.
所以這個(gè)直角三角形的三邊長(zhǎng)為15,20,25.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,現(xiàn)有一張邊長(zhǎng)為4的正方形紙片,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當(dāng)點(diǎn)P在邊AD上移動(dòng)時(shí),△PDH的周長(zhǎng)是否發(fā)生變化?并證明你的結(jié)論;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=AC,∠BAC=120°,AB的垂直平分線交BC于點(diǎn)D,那么∠DAC的度數(shù)為( 。
A. 90° B. 80° C. 70° D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點(diǎn)D,AE∥BD交CB的延長(zhǎng)線于點(diǎn)E.若∠E=35°,則∠BAC的度數(shù)為( )
A. 40° B. 45° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一外地游客到某特產(chǎn)專營(yíng)店,準(zhǔn)備購(gòu)買精加工的豆腐乳和獼猴桃果汁兩種盒裝特產(chǎn),若購(gòu)買3盒豆腐乳和2盒獼猴桃果汁共需60元;購(gòu)買1盒豆腐乳和3盒獼猴桃果汁共需55元.
(1)請(qǐng)分別求出每盒豆腐乳和每盒獼猴桃果汁的價(jià)格;
(2)該游客購(gòu)買了4盒豆腐乳和2盒獼猴桃果汁,共需多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)(1)班體育委員統(tǒng)計(jì)了全班同學(xué)60秒跳繩次數(shù),并列出了下面的不完整頻數(shù)分布表和不完整的頻數(shù)分布直方圖.根據(jù)圖表中的信息解答問(wèn)題
組別 | 跳繩次數(shù) | 頻數(shù) |
A | 60≤x<80 | 2 |
B | 80≤x<100 | 6 |
C | 100≤x<120 | 18 |
D | 120≤x<140 | 12 |
E | 140≤x<160 | a |
F | 160≤x<180 | 3 |
G | 180≤x<200 | 1 |
合計(jì) | 50 |
(1)求a的值;
(2)求跳繩次數(shù)x在120≤x<180范圍內(nèi)的學(xué)生的人數(shù);
(3)補(bǔ)全頻數(shù)分布直方圖,并指出組距與組數(shù)分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB∥CD,EF分別交AB、CD于G、F兩點(diǎn),射線FM平分∠EFD,將射線FM平移,使得端點(diǎn)F與點(diǎn)G重合且得到射線GN.若∠EFC=110°,則∠AGN的度數(shù)是( 。
A. 120° B. 125° C. 135° D. 145°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程2(x﹣3)﹣m=2的解和方程3x﹣7=2x的解相同.
(1)求m的值;
(2)已知線段AB=m,在直線AB上取一點(diǎn)P,恰好使AP=2PB,點(diǎn)Q為PB的中點(diǎn),求線段AQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在線段AB上,AC=8cm,CB=6cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).
(1)求線段MN的長(zhǎng);
(2)若C為線段AB上任一點(diǎn),滿足AC+CB=acm,其它條件不變,你能猜想MN的長(zhǎng)度嗎?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com