【題目】直線y=﹣x與雙曲線y=在同一坐標(biāo)系中的大致位置是( 。
A.
B.
C.
D.

【答案】D
【解析】解:∵直線y=﹣x中的k=﹣1<0,
∴該直線經(jīng)過(guò)第二、四象限;
∵雙曲線y=中的k=1>0,
∴該直線經(jīng)過(guò)第一、三象限;
觀察選項(xiàng),D選項(xiàng)符合題意.
故選:D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正比例函數(shù)的圖象和性質(zhì)和反比例函數(shù)的圖象的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握正比函數(shù)圖直線,經(jīng)過(guò)一定過(guò)原點(diǎn).K正一三負(fù)二四,變化趨勢(shì)記心間.K正左低右邊高,同大同小向爬山.K負(fù)左高右邊低,一大另小下山巒;反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形.有兩條對(duì)稱軸:直線y=x和 y=-x.對(duì)稱中心是:原點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,EBC的中點(diǎn),FCD上一點(diǎn),且CF=CD,求證:∠AEF=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在OAB中,O為坐標(biāo)原點(diǎn),橫、縱軸的單位長(zhǎng)度相同,A、B的坐標(biāo)分別為(8,6)(16,0),點(diǎn)P沿OA邊從點(diǎn)O開(kāi)始向終點(diǎn)A運(yùn)動(dòng),速度每秒1個(gè)單位,點(diǎn)Q沿BO邊從B點(diǎn)開(kāi)始向終點(diǎn)O運(yùn)動(dòng),速度每秒2個(gè)單位,如果P、Q同時(shí)出發(fā),用t()表示移動(dòng)時(shí)間,當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng)。求:

1)幾秒時(shí)PQAB.

2)設(shè)OPQ的面積為y,求yt的函數(shù)關(guān)系式.

3OPQOAB能否相似?若能,求出點(diǎn)P的坐標(biāo),若不能,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(10,0),點(diǎn)B的坐標(biāo)為(8,0),點(diǎn)C、D在以O(shè)A為直徑的半圓M上,且四邊形OCDB是平行四邊形,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條折線數(shù)軸.圖中點(diǎn)A表示﹣11,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距29個(gè)長(zhǎng)度單位.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉?lái)的一半,之后立刻恢復(fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉?lái)的兩倍,之后也立刻恢復(fù)原速.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

問(wèn):(1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要多少時(shí)間?

(2)P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少;

(3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度與Q、B兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】使得函數(shù)值為零的自變量的值稱為函數(shù)的零點(diǎn).例如,對(duì)于函數(shù)y=x-1,令y=0可得x=1,我們就說(shuō)1是函數(shù)y=x-1的零點(diǎn).

已知y=x2-2mx-2(m+3)(m為常數(shù)).

(1)當(dāng)m=0時(shí),求該函數(shù)的零點(diǎn);

(2)證明:無(wú)論m取何值,該函數(shù)總有兩個(gè)零點(diǎn);

(3)設(shè)函數(shù)的兩個(gè)零點(diǎn)分別為x1和x2,且,此時(shí)函數(shù)圖象與x軸的交點(diǎn)分別為A,B(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)M在直線y=x-10上,當(dāng)MA+MB最小時(shí),求直線AM的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在陽(yáng)光體育活動(dòng)時(shí)間,小亮、小瑩、小芳和大剛到學(xué)校乒乓球室打乒乓球,當(dāng)時(shí)只有一副空球桌,他們只能選兩人打第一場(chǎng).
(1)如果確定小亮打第一場(chǎng),再?gòu)钠溆嗳酥须S機(jī)選取一人打第一場(chǎng),求恰好選中大剛的概率;
(2)如果確定小亮做裁判,用“手心、手背”的方法決定其余三人哪兩人打第一場(chǎng).游戲規(guī)則是:三人同時(shí)伸“手心、手背”中的一種手勢(shì),如果恰好有兩人伸出的手勢(shì)相同,那么這兩人上場(chǎng),否則重新開(kāi)始,這三人伸出“手心”或“手背”都是隨機(jī)的,請(qǐng)用畫(huà)樹(shù)狀圖的方法求小瑩和小芳打第一場(chǎng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△AOB,COD是等腰直角三角形,點(diǎn)DAB上,

(1)求證:△AOC≌△BOD;

(2)若AD=3,BD=1,求CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小張第一次用180元購(gòu)買(mǎi)了8套兒童服裝,以一定價(jià)格出售.如果以每套兒童服裝80元的價(jià)格為標(biāo)準(zhǔn),超出的記作整數(shù),不足的記作負(fù)數(shù),記錄如下(單位:元):

請(qǐng)通過(guò)計(jì)算說(shuō)明

(1)小張賣(mài)完這8套兒童服裝后是盈利還是虧損?盈利(或虧損)了多少錢(qián)?

(2)每套兒童服裝的平均售價(jià)是多少元?

(3)小張第二次用第一次的進(jìn)價(jià)再次購(gòu)買(mǎi)900元的兒童服裝,如果他預(yù)計(jì)第二次每套服裝的平均售價(jià)75元,按他的預(yù)計(jì)第二次售價(jià)可獲利多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案