【題目】如圖,將一個小球從斜坡的點O處拋出,小球的拋出路線可以用二次函數(shù)y4xx2刻畫,斜坡可以用一次函數(shù)yx刻畫,下列結(jié)論錯誤的是( )

A.斜坡的坡度為1: 2

B.小球距O點水平距離超過4米呈下降趨勢

C.小球落地點距O點水平距離為7

D.當(dāng)小球拋出高度達到7.5m時,小球距O點水平距離為3m

【答案】D

【解析】

求出拋物線與直線的交點,判斷;根據(jù)二次函數(shù)的性質(zhì)求出對稱軸,根據(jù)二次函數(shù)性質(zhì)判斷;求出當(dāng)時,的值,判定

解:,

解得,,

∶7=1∶2,∴A正確;

小球落地點距點水平距離為7米,C正確;

則拋物線的對稱軸為,

當(dāng)時,的增大而減小,即小球距點水平距離超過4米呈下降趨勢,B正確,

當(dāng)時,

整理得,

解得,,,

當(dāng)小球拋出高度達到時,小球水平距點水平距離為,D錯誤,符合題意;

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC中,AB=4cm,以C為圓心,1cm長為半徑畫⊙C,點P在⊙C上運動,連接AP,并將AP繞點A順時針旋轉(zhuǎn)60°AP′,點D是邊AC的中點,連接DP′.在點P移動的過程中,線段DP′長度的最小值為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是☉O的直徑,DC是☉O的切線,C是切點,ADDC,垂足為D,且與圓O相交于點E.

(1)求證:DAC=BAC.

(2)若☉O的直徑為5cm,EC=3cm,AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在所給的方格紙中,每個小正方形的邊長都是1,四邊形是平行四邊形,連結(jié)(點,,均在格點上),請按要求完成下列作圖任務(wù).要求:①僅用無刻度直尺,且不能用直尺中的直角;②保留作圖痕跡.

1)在圖1中作的中位線,且;

2)在圖2中取邊上點,以,為鄰邊作,且的面積等于的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店準備購進一批電冰箱和空調(diào),每臺電冰箱的進價比每臺空調(diào)的進價多400元,商店用8000元購進電冰箱的數(shù)量與用6400元購進空調(diào)的數(shù)量相等.

(1)求每臺電冰箱與空調(diào)的進價分別是多少?

(2)已知電冰箱的銷售價為每臺2100元,空調(diào)的銷售價為每臺1750元.若商店準備購進這兩種家電共100臺,其中購進電冰箱x臺(33x40),那么該商店要獲得最大利潤應(yīng)如何進貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,ABCCDE均為等邊三角形,直線AD和直線BE交于點F

①求證:ADBE;

②求∠AFB的度數(shù).

(2)如圖2,ABCCDE均為等腰直角三角形,∠ABC=∠DEC90°,直線AD和直線BE交于點F

①求證:ADBE

②若ABBC3,DEEC.將CDE繞著點C在平面內(nèi)旋轉(zhuǎn),當(dāng)點D落在線段BC上時,在圖3中畫出圖形,并求BF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABD中,∠ABD = ADB,分別以點B,D為圓心,AB長為半徑在BD的右側(cè)作弧,兩弧交于點C,連接BCDCAC,ACBD交于點O

1)用尺規(guī)補全圖形,并證明四邊形ABCD為菱形;

2)如果AB = 5,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xoy中,對于已知的△ABC,點P在邊BC的垂直平分線上,若以P點為圓心,PB為半徑的⊙P與△ABC三條邊的公共點個數(shù)之和大于等于3,則稱點P為△ABC關(guān)于邊BC穩(wěn)定點.如圖為△ABC關(guān)于邊BC的一個穩(wěn)定點P的示意圖,已知A(m,0),B(0n)

(1) 如圖1,當(dāng)時,在點中,△AOB關(guān)于邊OA穩(wěn)定點________

(2) 如圖2,當(dāng)n=4時,若直線y=6上存在△AOB關(guān)于邊AB穩(wěn)定點,則m的取值范圍是___________

(3)如圖3,當(dāng)m=3時,過點M(57)的直線y=kx+b上存在△AOB關(guān)于邊AB穩(wěn)定點,則k的取值范圍是__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y = ax2 ax + c圖象的頂點為C,一次函數(shù)y = x + 3的圖象與這個二次函數(shù)的圖象交于AB兩點(其中點A在點B的左側(cè)),與它的對稱軸交于點D

(1)求點D的坐標;

(2) ①若點C與點D關(guān)于x軸對稱,且△BCD的面積等于4,求此二次函數(shù)的關(guān)系式;

②若CD=DB,且△BCD的面積等于4,求a的值.

查看答案和解析>>

同步練習(xí)冊答案