【題目】ABC 中, AB AC , BAC=100°,點 D BC 上, ABD AFD 關于直線 AD 對稱, FAC 的平分線交 BC 于點 G,連接 FG BAD _________.時,DFG為等腰三角形.

【答案】10°,25°40°

【解析】

由軸對稱可以得出ADB≌△ADF,就可以得出∠B=AFDAB=AF,在證明AGF≌△AGC就可以得出∠AFG=C,就可以求出∠DFG=80°,GD=GF時,就可以得出∠GDF═80°,根據∠ADG=40+θ,就有40°+80°+40°+θ+θ=180°就可以求出結論;當DF=GF時,就可以得出∠GDF=50°,就有40°+50°+40°+2θ=180°,當DF=DG時,∠GDF=20°,就有40°+20°+40°+2θ=180°,從而求出結論.

AB=AC,∠BAC=100°

∴∠B=C=40°

∵△ABDAFD關于直線AD對稱,

∴△ADB≌△ADF,

∴∠B=AFD=40°,AB=AF,BAD=FAD=θ,

AF=AC

AG平分∠FAC,

∴∠FAG=CAG

AGFAGC中,

,

∴△AGF≌△AGCSAS),

∴∠AFG=C

∵∠DFG=AFD+AFG,

∴∠DFG=B+C=40°+40°=80°

GD=GF時,

∴∠GDF=GFD=80°

∵∠ADG=40°+θ,

40°+80°+40°+θ+θ=180°,

θ=10°

DF=GF時,

∴∠FDG=FGD

∵∠DFG=80°,

∴∠FDG=FGD=50°

40°+50°+40°+2θ=180°

θ=25°

DF=DG時,

∴∠DFG=DGF=80°

∴∠GDF=20°,

40°+20°+40°+2θ=180°,

θ=40°

∴當θ=10°,25°40°時,DFG為等腰三角形

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線:y=﹣xx﹣2)(0≤x2)記為C1,它與x軸交于兩點O,A1;將C1A1旋轉180°得到C2,交x軸于A2;將C2A2旋轉180°得到C3,交x軸于A3;…如此進行下去,得到Cn,若點P(2017,m)在拋物線Cn上,則m( )

A. 1 B. ﹣1 C. 2 D. ﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠BACDEABE,則下列結論:①DECD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+ACAB,其中正確的是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6cm,動點PA點出發(fā),在正方形的邊上由A→B→C→D運動,設運動的時間為t(s),△APD的面積為S(cm2)St的函數(shù)圖象如圖所示

(1)求點PBC上運動的時間范圍;

(2)t為何值時,△APD的面積為10cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,RtABC的三個頂點A(-2,2),B(0,5),C(0,2).

(1)ABC以點C為旋轉中心旋轉180°,得到A1B1C,請畫出A1B1C的圖形.

(2)平移ABC,使點A的對應點A2坐標為(-2,-6),請畫出平移后對應的A2B2C2的圖形.

(3)若將A1B1C繞某一點旋轉可得到A2B2C2,請直接寫出旋轉中心的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=-2x+4xy軸相交于A,B兩點,點C在線段AB上,且∠COA=45°

(1)求點A,B的坐標;

(2)求△AOC的面積;

(3)直線OC上有一動點D,過點D作直線l(不與直線AB重合)x,y軸分別交于點E,F,當△OEF與△ABO全等時,求直線EF的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將九年級部分男生擲實心球的成績進行整理,分成5個小組(x表示成績,單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統(tǒng)計圖和頻數(shù)分布直方圖(不完整).規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.

(1)這部分男生有多少人?其中成績合格的有多少人?

(2)這部分男生成績的中位數(shù)落在哪一組?扇形統(tǒng)計圖中D組對應的圓心角是多少度?

(3)要從成績優(yōu)秀的學生中,隨機選出2人介紹經驗,已知甲、乙兩位同學的成績均為優(yōu)秀,求他倆至少有1人被選中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,河的兩岸l1l2相互平行,ABl1上的兩點,C、Dl2上的兩點,某人在點A處測得∠CAB=90°,DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABx軸交于點A4,0),與y軸交于點B0,-4),若點E在線段AB上,OEOF,且OEOF,連接AF.

1)猜想線段AFBE之間的關系,并證明;

2)過點OOMEF垂足為D,OM分別交AF、BA的延長線于點CMBE=,求CF的長.

查看答案和解析>>

同步練習冊答案