【題目】如圖,在銳角ABC中,小明進(jìn)行了如下的尺規(guī)作圖:

①分別以點(diǎn)A、B為圓心,以大于AB的長(zhǎng)為半徑作弧,兩弧分別相交于點(diǎn)P、Q;

②作直線PQ分別交邊ABBC于點(diǎn)E、D

1)小明所求作的直線DE是線段AB   

2)聯(lián)結(jié)AD,AD7,sinDACBC9,求AC的長(zhǎng).

【答案】1)線段AB的垂直平分線(或中垂線);(2AC5

【解析】

1)垂直平分線:經(jīng)過某一條線段的中點(diǎn),并且垂直于這條線段的直線,叫做這條線段的垂直平分線

2)根據(jù)題意垂直平分線定理可得ADBD,得到CD2,又因?yàn)橐阎?/span>sinDAC=,故可過點(diǎn)DAC垂線,求得DF=1,利用勾股定理可求得AFCF,即可求出AC長(zhǎng).

1)小明所求作的直線DE是線段AB的垂直平分線(或中垂線);

故答案為線段AB的垂直平分線(或中垂線);

2)過點(diǎn)DDF⊥AC,垂足為點(diǎn)F,如圖,

∵DE是線段AB的垂直平分線,

∴ADBD7

∴CDBCBD2,

Rt△ADF中,∵sin∠DAC,

∴DF1,

Rt△ADF中,AF,

Rt△CDF中,CF,

∴ACAF+CF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)P在射線BC上(異于點(diǎn)B、C),直線AP與對(duì)角線BD及射線DC分別交于點(diǎn)F、Q

(1)若BP=,求BAP的度數(shù);

(2)若點(diǎn)P在線段BC上,過點(diǎn)F作FGCD,垂足為G,當(dāng)FGC≌△QCP時(shí),求PC的長(zhǎng);

(3)以PQ為直徑作M.

①判斷FC和M的位置關(guān)系,并說明理由;

②當(dāng)直線BD與M相切時(shí),直接寫出PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A2,y1),B(﹣3,y2),C(﹣5,y3)三個(gè)點(diǎn)都在反比例函數(shù)的圖象上,比較y1y2,y3的大小,則下列各式正確的是(  )

A.y1y2y3B.y2y3y1C.y1y3y2D.y3y2y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】京杭大運(yùn)河是世界文化遺產(chǎn).綜合實(shí)踐活動(dòng)小組為了測(cè)出某段運(yùn)河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點(diǎn)A、B和點(diǎn)C、D,先用卷尺量得AB=160m,CD=40m,再用測(cè)角儀測(cè)得∠CAB=30°,DBA=60°,求該段運(yùn)河的河寬(即CH的長(zhǎng)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AD、BD分別是△ABC的內(nèi)角∠BAC、∠ABC的平分線,過點(diǎn)AAEAD,交BD的延長(zhǎng)線于點(diǎn)E.

1)求證:∠E=C;

2)如圖2,如果AE=AB,且BDDE=23,求cosABC的值;

3)如果∠ABC是銳角,且△ABC與△ADE相似,求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們研究過的圖形中,圓的任何一對(duì)平行切線的距離總是相等的,所以圓是等寬曲線”.除了圓以外,還有一些幾何圖形也是等寬曲線,如勒洛三角形(如圖),它是分別以等邊三角形的每個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑,在另兩個(gè)頂點(diǎn)間畫一段圓弧,三段圓弧圍成的曲邊三角形. 是等寬的勒洛三角形和圓形滾木的截面圖.

有如下四個(gè)結(jié)論:

①勒洛三角形是中心對(duì)稱圖形

②圖中,點(diǎn)上任意一點(diǎn)的距離都相等

③圖中,勒洛三角形的周長(zhǎng)與圓的周長(zhǎng)相等

④使用截面是勒洛三角形的滾木來搬運(yùn)東西,會(huì)發(fā)生上下抖動(dòng)

上述結(jié)論中,所有正確結(jié)論的序號(hào)是( )

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(  )

A.三角形的外心一定在三角形的外部B.三角形的內(nèi)心到三個(gè)頂點(diǎn)的距離相等

C.外心和內(nèi)心重合的三角形一定是等邊三角形D.直角三角形內(nèi)心到兩銳角頂點(diǎn)連線的夾角為125°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】孔明同學(xué)對(duì)本校學(xué)生會(huì)組織的“為貧困山區(qū)獻(xiàn)愛心”自愿捐款活動(dòng)進(jìn)行抽樣調(diào)查,得到了一組學(xué)生捐款情況的數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計(jì)圖,圖中從左到右各長(zhǎng)方形的高度之比為345108,又知此次調(diào)查中捐款30元的學(xué)生一共16人.

1)孔明同學(xué)調(diào)查的這組學(xué)生共有_______人;

2)這組數(shù)據(jù)的眾數(shù)是_____元,中位數(shù)是_____元;

3)若該校有2000名學(xué)生,都進(jìn)行了捐款,估計(jì)全校學(xué)生共捐款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2+bx+c(a0)的頂點(diǎn)M(1,﹣4a),且過點(diǎn)A(4t),與x軸交于BC兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),直線l經(jīng)過點(diǎn)A,B,交y軸交于點(diǎn)D.

(1)a=﹣1,當(dāng)2≤x4時(shí),求y的范圍;

(2)若△MBC是等腰直角三角形,求△ABM的面積;

(3)點(diǎn)E是直線l上方的拋物線上的動(dòng)點(diǎn),△BDE的面積的最大值為;設(shè)P是拋物線的對(duì)稱軸上的一點(diǎn),點(diǎn)Q在拋物線上,以點(diǎn)AB、PQ為頂點(diǎn)的四邊形能否為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案