【題目】如圖,在△ABC中,∠BAC=90°,AC=5,AB=12,∠BAC的平分線與BC的垂直平分線DG交于點D,DE⊥AC的延長線于點E,DF⊥AB于點F.
(1)求證:CE=BF;
(2)求DG的長.
【答案】(1)見解析;(2)6.5
【解析】
(1)要證明CE=BF,只要證明△DEC≌△DFB即可,根據(jù)題目中的條件和角平分線的性質(zhì)可以得到兩個三角形全等,從而可以證明結(jié)論成立;
(2)根據(jù)∠BAC=90°,AC=5,AB=12,可以求得BC的長,再根據(jù)DG垂直平分BC和直角三角形斜邊上的中線等于斜邊的一半,可以求得DG的長.
(1)證明:連接DC、DB,
∵DE⊥AC,DF⊥AB,AD平分∠CAB,
∴DE=DF,∠DEC=∠DFB=90°,
∵DG垂直平分BC,
∴DC=DB,
在Rt△DEC和Rt△DFB中,
DC=DB,DE=DF,
∴Rt△DEC≌Rt△DFB(HL)
∴CE=BF;
(2)∵∠BAC=90°,AC=5,AB=12,
∴BC==13,
由(1)知Rt△DEC≌Rt△DFB,
則∠EDC=∠FDB,
∵∠BAC=∠DEC=∠DFA=90°,
∴∠EDF=90°,
∴∠EDC+∠CDF=90°,
∴∠FDB+∠CDF=90°,
∴∠CDB=90°,
∵BC=13,DG垂直平分BC,
∴DG=6.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,交y軸于C點,其中B點坐標為(3,0),C點坐標為(0,3),且圖象對稱軸為直線x=1.
(1)求此二次函數(shù)的關(guān)系式;
(2)P為二次函數(shù)y=ax2+bx+c圖象上一點,且S△ABP=S△ABC,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(a﹣1)x2+2x+a﹣1=0.
(1)若該方程有一根為2,求a的值及方程的另一根;
(2)當a為何值時,方程僅有一個根?求出此時a的值及方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)概念:
三角形一邊的延長線與三角形另一邊的夾角叫做三角形的外角.如圖1中∠ACD是△AOC的外角,那么∠ACD與∠A、∠O之間有什么關(guān)系呢?
∵∠ACD=180°﹣∠ACO,∠A+∠O=180°﹣∠ACO
∴∠ACD=∠A+ ,
結(jié)論:三角形的外角等于與它不相鄰的兩個內(nèi)角的 .
問題探究:
(1)如圖2,已知:∠AOB=∠ACP=∠BDP=60°,且AO=BO,則△AOC △OBD;
(2)如圖3,已知∠ACP=∠BDP=45°,且AO=BO,當∠AOB= °,△AOC≌△OBD;
應(yīng)用結(jié)論:
(3)如圖4,∠AOB=90°,OA=OB,AC⊥OP,BD⊥OP,請說明:AC=CD+BD.
拓展應(yīng)用:
(4)如圖5,四邊形ABCD,AB=BC,BD平分∠ADC,AE∥CD,∠ABC+∠AEB=180°,EB=5,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度.平面直角坐標系的原點O在格點上, 軸、軸都在網(wǎng)格線上.線段AB的端點A、B在格點上.
(1)將線段AB繞點O逆時針90°得到線段A1B1,請在圖中畫出線段A1B1;
(2)在(1)的條件下,線段A2B2與線段A1B1關(guān)于原點O成中心對稱,請在圖中畫出線段A2B2;
(3)在(1)、(2)的條件下,點P是此平面直角坐標系內(nèi)的一點,當以點A、B、B2、P為頂點的四邊形是平行四邊形時,請直接寫出點P的坐標: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個長為2a、寬為2b的長方形(其中a,b均為正數(shù),且a>b),沿圖中虛線用剪刀均勻分成四塊相同小長方形,然后按圖2方式拼成一個大正方形。
(1)你認為圖2中大正方形的邊長為___;小正方形(陰影部分)的邊長為___.(用含a、b的代數(shù)式表示)
(2)仔細觀察圖2,請你寫出下列三個代數(shù)式:(ab),(a+b),ab所表示的圖形面積之間的相等關(guān)系,并選取適合a、b的數(shù)值加以驗證。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120度時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃購進A,B兩種新型節(jié)能臺燈共120盞,這兩種臺燈的進價、售價如表所示:
類型 價格 | 進價(元/盞) | 售價(元/盞) |
A型 | 30 | 45 |
B型 | 50 | 70 |
(1)若商場預(yù)計進貨款為5200元,則這兩種臺燈各購進多少盞?
(2)若商場規(guī)定B型臺燈的進貨數(shù)量不超過A型臺燈數(shù)量的3倍,應(yīng)怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com