【題目】如圖,四邊形ABCD、DEFG都是正方形,連接AE、CG.
(1)求證:AE=CG;
(2)觀察圖形,猜想AE與CG之間的位置關(guān)系,并證明你的猜想.
【答案】(1)見(jiàn)解析;(2)AE⊥CG
【解析】
試題分析:可以把結(jié)論涉及的線段放到△ADE和△CDG中,考慮證明全等的條件,又有兩個(gè)正方形,∴AD=CD,DE=DG,它們的夾角都是∠ADG加上直角,故夾角相等,可以證明全等;再利用互余關(guān)系可以證明AE⊥CG.
(1)如圖,
∵AD=CD,DE=DG,∠ADC=∠GDE=90°,
又∵∠CDG=90°+∠ADG=∠ADE,
∴△ADE≌△CDG(SAS).
∴AE=CG.
(2)如圖,設(shè)AE與CG交點(diǎn)為M,AD與CG交點(diǎn)為N.
∵△ADE≌△CDG,
∴∠DAE=∠DCG.
又∵∠ANM=∠CND,
∴△AMN∽△CDN.
∴∠AMN=∠ADC=90°.
∴AE⊥CG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一”期間,小明和父母一起開(kāi)車(chē)到距家的景點(diǎn)旅游,出發(fā)前,汽車(chē)油箱內(nèi)儲(chǔ)油,當(dāng)行駛時(shí),發(fā)現(xiàn)油箱余油量為(假設(shè)行駛過(guò)程中汽車(chē)的耗油量是均勻的).
(1)這個(gè)變化過(guò)程中哪個(gè)是自變量?哪個(gè)是因變量?
(2)求該車(chē)平均每千米的耗油量,并寫(xiě)出行駛路程與剩余油量的關(guān)系式;
(3)當(dāng)時(shí),求剩余油量的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,任意一個(gè)正整數(shù)都可以進(jìn)行這樣的分解:(是正整數(shù),且),在的所有這種分解中,如果兩因數(shù)之差的絕對(duì)值最小,我們就稱(chēng)是的最佳分解,產(chǎn)規(guī)定:,例如:12可以分解成,,,因?yàn)?/span>,所以是12的最佳分解,所以.
(1)求;
(2)若正整數(shù)是4的倍數(shù),我們稱(chēng)正整數(shù)為“四季數(shù)”,如果一個(gè)兩位正整數(shù),(,為自然數(shù)),交換個(gè)位上的數(shù)字與十位上的數(shù)字得到的新兩位正整數(shù)減去原來(lái)的兩位正整數(shù)所得的差為“四季數(shù)”,那么我們稱(chēng)這個(gè)數(shù)為“有緣數(shù)”,求所有“有緣數(shù)”中的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面資料:
小明遇到這樣一個(gè)問(wèn)題:如圖1,對(duì)面積為a的△ABC逐次進(jìn)行以下操作:分別延長(zhǎng)AB、BC、CA至A1、B1、C1,使得A1B2AB,B1C2BC,C1A2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1,求S1的值.
小明是這樣思考和解決這個(gè)問(wèn)題的:如圖2,連接A1C、B1A、C1B,因?yàn)?/span>A1B2AB,B1C2BC,C1A2CA,根據(jù)等高兩三角形的面積比等于底之比,所以2S△ABC2a,由此繼續(xù)推理,從而解決了這個(gè)問(wèn)題.
(1)直接寫(xiě)出S1 (用含字母a的式子表示).
請(qǐng)參考小明同學(xué)思考問(wèn)題的方法,解決下列問(wèn)題:
(2)如圖3,P為△ABC內(nèi)一點(diǎn),連接AP、BP、CP并延長(zhǎng)分別交邊BC、AC、AB于點(diǎn)D、E、F,則把△ABC分成六個(gè)小三角形,其中四個(gè)小三角形面積已在圖上標(biāo)明,求△ABC的面積.
(3)如圖4,若點(diǎn)P為△ABC的邊AB上的中線CF的中點(diǎn),求S△APE與S△BPF的比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在中,,,點(diǎn)為的中點(diǎn).
(1)如圖1,、分別是、上的點(diǎn),且,求證:為等腰直角三角形.
(2)如圖2,若、分別為,延長(zhǎng)線上的點(diǎn),仍有,其他條件不變,那么,是否仍為等腰直角三角形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上每相鄰兩點(diǎn)間的距離為一個(gè)單位長(zhǎng)度,點(diǎn)、、、對(duì)應(yīng)的數(shù)分別是,且.
(1)那么 , :
(2)點(diǎn)以個(gè)單位/秒的速度沿著數(shù)軸的正方向運(yùn)動(dòng),秒后點(diǎn)以個(gè)單位/秒的速度也沿著數(shù)軸的正方向運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)處立刻返回,與點(diǎn)在數(shù)軸的某點(diǎn)處相遇,求這個(gè)點(diǎn)對(duì)應(yīng)的數(shù);
(3)如果、兩點(diǎn)以(2)中的速度同時(shí)向數(shù)軸的負(fù)方向運(yùn)動(dòng),點(diǎn)從圖上的位置出發(fā)也向數(shù)軸的負(fù)方向運(yùn)動(dòng),且始終保持,當(dāng)點(diǎn)運(yùn)動(dòng)到時(shí),點(diǎn)對(duì)應(yīng)的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(生活常識(shí))
射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等。如圖 1,MN 是平面鏡,若入射光線 AO 與水平鏡面夾角為∠1,反射光線 OB 與水平鏡面夾角為∠2,則∠1=∠2 .
(現(xiàn)象解釋?zhuān)?/span>
如圖 2,有兩塊平面鏡 OM,ON,且 OM⊥ON,入射光線 AB 經(jīng)過(guò)兩次反射,得到反射光線 CD.求證 AB∥CD.
(嘗試探究)
如圖 3,有兩塊平面鏡 OM,ON,且∠MON =55 ,入射光線 AB 經(jīng)過(guò)兩次反射,得到反射光線 CD,光線 AB 與 CD 相交于點(diǎn) E,求∠BEC 的大小.
(深入思考)
如圖 4,有兩塊平面鏡 OM,ON,且∠MON α ,入射光線 AB 經(jīng)過(guò)兩次反射,得到反射光線 CD,光線 AB 與 CD 所在的直線相交于點(diǎn) E,∠BED=β , α 與 β 之間滿(mǎn)足的等量關(guān)系是 .(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩張寬度相等的紙條疊放在一起,重疊部分構(gòu)成四邊形ABCD.
(1)求證:四邊形ABCD是菱形;
(2)若紙條寬3cm,∠ABC=60°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】浠水縣商場(chǎng)某柜臺(tái)銷(xiāo)售每臺(tái)進(jìn)價(jià)分別為160元、120元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷(xiāo)售情況:
銷(xiāo)售時(shí)段 | 銷(xiāo)售數(shù)量 | 銷(xiāo)售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 4臺(tái) | 1200元 |
第二周 | 5臺(tái) | 6臺(tái) | 1900元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷(xiāo)售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷(xiāo)售單價(jià);
(2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共50臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,商場(chǎng)銷(xiāo)售完這50臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)超過(guò)1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com