【題目】計算12的結果是(  )

A. 1B. 1C. 3D. 3

【答案】A

【解析】

原式利用有理數(shù)的減法法則計算即可求出值.

解:原式=1+(﹣2)=﹣(21)=﹣1,

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知點P在圓O內(nèi),且OP4,則圓O的半徑可以是( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、OB在同一條直線上,∠AOC=BOD,OE是∠BOC的平分線.

1)若∠AOC=46°,求∠DOE的度數(shù);

2)若∠DOE=30°,求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分別是AE、CD的中點,判斷BM與BN的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條筆直的公路上有、兩地,甲從地去地,乙從地去地然后立即原路返回地,返回時的速度是原來的2倍,如圖是甲、乙兩人離地的距離(千米)和時間(小時)之間的函數(shù)圖象.

請根據(jù)圖象回答下列問題:

(1)、兩地的距離是 千米, ;

(2)求的坐標,并解釋它的實際意義;

(3)請直接寫出當取何值時,甲乙兩人相距15千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一條彎曲的公路改成直道,可以縮短路程,其道理用幾何知識解釋正確的是(
A.線段可以比較大小
B.線段有兩個端點
C.兩點之間線段最短
D.過兩點有且只有一條直線

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知O是直線AB上的一點,∠COD是直角,OE平分∠BOC.

(1)如圖①,若∠AOC=30°,求∠DOE的度數(shù);

(2)在圖①中,若∠AOC,直接寫出∠DOE的度數(shù)(用含的代數(shù)式表示);

(3)將圖①中的∠DOC繞頂點O順時針旋轉至圖②的位置,探究∠AOC和∠DOE的度數(shù)之間的關系,寫出你的結論,并說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知(m3x|m|2+418是關于x的一元一次方程,則( 。

A. m1B. m3C. m=﹣3D. m±3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O是坐標原點,直線與x軸,y軸分別交于B,C兩點,拋物線經(jīng)過B,C兩點,與x軸的另一個交點為點A,動點P從點A出發(fā)沿AB以每秒3個單位長度的速度向點B運動,運動時間為t(0<t<5)秒.

(1)求拋物線的解析式及點A的坐標;

(2)在點P從點A出發(fā)的同時,動點Q從點B出發(fā)沿BC以每秒3個單位長度的速度向點C運動,動點N從點C出發(fā)沿CA以每秒個單位長度的速度向點A運動,運動時間和點P相同.

①記△BPQ的面積為S,當t為何值時,S最大,最大值是多少?

②是否存在△NCQ為直角三角形的情形?若存在,求出相應的t值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案