【題目】如圖在菱形紙片ABCD中,AB=4,∠B=120°,將菱形紙片翻折,使點(diǎn)A落在邊CD的中點(diǎn)G處,折痕為EF,點(diǎn)E,F分別在邊AD,AB上,則sin∠GEF的值為_____.
【答案】
【解析】
過(guò)點(diǎn)G作HG⊥AD于點(diǎn)H,連接AG交EF于點(diǎn)N,連接BD,BG.根據(jù)菱形的性質(zhì)得到∠DAB=60°,AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB求得∠HDG=∠DAB=60°,根據(jù)線段中點(diǎn)的定義得到DG=CD=2解直角三角形得到DH=1,HG=求得AH=AD+DH=5,根據(jù)勾股定理得到EG=,AG=,由折疊的性質(zhì)得到AN=NG=,AG⊥EF,于是得到結(jié)論.
解:如圖:過(guò)點(diǎn)G作HG⊥AD于點(diǎn)H,連接AG交EF于點(diǎn)N,連接BD,BG.
∵四邊形ABCD是菱形,AB=4,∠ABC=120°,
∴∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDG=∠DAB=60°,
∵點(diǎn)G是CD中點(diǎn),
∴DG=CD=2,
在Rt△DGH中,DG=2,∠HDG=60°
∴DH=1,HG=
∴AH=AD+DH=5,
在Rt△EGH中,EG2=HG2+EH2,
∴EG2=(5﹣EG)2+3,
∴EG=,
在Rt△AHG中,AG=
由折疊的性質(zhì)的,AN=NG=,AG⊥EF,
∴sin∠GEF=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于點(diǎn)C(n,3),與x軸、y軸分別交于點(diǎn)A、B,過(guò)點(diǎn)C作CM⊥x軸,垂足為M.若,OA=2.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)當(dāng)kx+b﹣>0時(shí),求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)(a≠0)的圖象與反比例函數(shù)的圖象交于第二、第四象限內(nèi)的A、B兩點(diǎn),與軸交于點(diǎn)C,過(guò)點(diǎn)A作AH⊥軸,垂足為點(diǎn)H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(,-2).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AHO的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以斜邊AB上一點(diǎn)O為圓心,OB為半徑作⊙O,交AC于點(diǎn)E,交AB于點(diǎn)D,且∠BEC=∠BDE.
(1)求證:AC是⊙O的切線;
(2)連接OC交BE于點(diǎn)F,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l1:y=kx+b與直線l2:y=2x﹣4的交點(diǎn)M的縱坐標(biāo)為2,且與直線y=﹣x﹣2交x軸于同一點(diǎn).
(1)求直線l1的表達(dá)式;
(2)在給出的平面直角坐標(biāo)系中作出直線l1的圖象,并求出它與直線l2及x軸圍成圖形的面積;
(3)根據(jù)圖象,直接寫出關(guān)于x的不等式kx+b>0>2x﹣4的解集
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)甲、乙兩班各有學(xué)生50人,為了了解這兩個(gè)班學(xué)生身體素質(zhì)情況,進(jìn)行了抽樣調(diào)查,數(shù)據(jù)整理過(guò)程如下,請(qǐng)完成下面數(shù)據(jù)整理中的問(wèn)題:
(1)收集數(shù)據(jù)
從甲、乙兩個(gè)班中各隨機(jī)抽取10名學(xué)生進(jìn)行身體素質(zhì)測(cè)試,測(cè)試成績(jī)(百分制)如下:
甲班:65,75,75,80,60,50,75,90,85,65;
乙班:90,55,80,70,55,70,95,80,65,70;
(2)整理描述數(shù)據(jù)
按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績(jī)x 人數(shù) 班級(jí) | 50≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x<100 |
甲班 | 1 | 3 | 3 | 2 | 1 |
乙班 | 2 | 1 | m | 2 | n |
在表中:m= ,n= ;
(3)分析數(shù)據(jù)
①若規(guī)定測(cè)試成績(jī)?cè)?/span>80分(含80分)以上的學(xué)生身體素質(zhì)為優(yōu)秀,請(qǐng)估計(jì)乙班50名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生有 人;
②現(xiàn)從甲班指定的3名學(xué)生(1男2女),乙班指定的2名學(xué)生(1男1女)中分別抽取1名學(xué)生去參加身體素質(zhì)拓展訓(xùn)練,用樹(shù)狀圖或列表法求出抽到的2名同學(xué)中恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC內(nèi)接于⊙O,過(guò)點(diǎn)A作直線EF.
(1)如圖①所示,若AB為⊙O的直徑,要使EF成為⊙O的切線,還需要添加的一個(gè)條件是(至少說(shuō)出兩種): 或者 .
(2)如圖②所示,如果AB是不過(guò)圓心O的弦,且∠CAE=∠B,那么EF是⊙O的切線嗎?試證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】頂點(diǎn)為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線y=﹣x+m經(jīng)過(guò)點(diǎn)C,交x軸于E(4,0).
(1)求出拋物線的解析式;
(2)如圖1,點(diǎn)M為線段BD上不與B、D重合的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線,垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;
(3)點(diǎn)P為x軸的正半軸上一個(gè)動(dòng)點(diǎn),過(guò)P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對(duì)應(yīng)點(diǎn)F恰好落在y軸上時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)經(jīng)市場(chǎng)調(diào)查,發(fā)現(xiàn)進(jìn)價(jià)為40元的臺(tái)燈每月的銷售量y(臺(tái))與售價(jià)x(元)的相關(guān)信息如下:
售價(jià)x(元) | 50 | 60 | 70 | 80 | …… |
銷售量y(臺(tái)) | 200 | 180 | 160 | 140 | …… |
(1)試用你學(xué)過(guò)的函數(shù)來(lái)描述y與x的關(guān)系,這個(gè)函數(shù)可以是 函數(shù),求這個(gè)函數(shù)關(guān)系式;
(2)售價(jià)為多少元時(shí),當(dāng)月的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com