【題目】將矩形紙片ABCD按如圖所示的方式折疊,恰好得到菱形AECF.若AB=3,則菱形AECF的面積為_____.
【答案】
【解析】
根據(jù)菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通過折疊的性質(zhì),結(jié)合直角三角形勾股定理求得BC的長,則利用菱形的面積公式即可求解.
解:∵四邊形AECF是菱形,AB=3,
∴設(shè)BE=x,則AE=3﹣x,CE=3﹣x,
∵四邊形AECF是菱形,
∴∠FCO=∠ECO,
∵∠ECO=∠ECB,
∴∠ECO=∠ECB=∠FCO=30°,
∴2BE=CE,
∴CE=2x,
∴2x=3﹣x,
解得:x=1,
∴CE=2,利用勾股定理得出:
BC2+BE2=EC2,
BC=
又∵AE=AB﹣BE=3﹣1=2,
則菱形的面積=AEBC=.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架長2.5米的梯子AB斜靠在豎直的墻AC上,這時B到墻AC的距離為0.7米.
(1)若梯子的頂端A沿墻AC下滑0.9米至A1處,求點B向外移動的距離BB1的長;
(2)若梯子從頂端A處沿墻AC下滑的距離是點B向外移動的距離的一半,試求梯子沿墻AC下滑的距離是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中考體育測試前,某區(qū)教育局為了了解選報引體向上的初三男生的成績情況,隨機抽測了本區(qū)部分選報引體向上項目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖:
請你根據(jù)圖中的信息,解答下列問題:
()寫出扇形圖中__________,并補全條形圖.
()在這次抽測中,測試成績的眾數(shù)和中位數(shù)分別是__________個、__________個.
()該區(qū)體育中考選報引體向上的男生共有人,如果體育中考引體向上達個以上(含個)得滿分,請你估計該區(qū)體育中考中選報引體向上的男生能獲得滿分的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
,,,
由以上三個等式相加,可得
.
讀完以上材料,請你計算下列各題:
(1)(寫出過程);
(2)__________________________(直接寫出答案);
(3)_____________________(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E、F分別為邊BC、CD的中點,AF、DE相交于點G,則可得結(jié)論:①AF=DE,②AF⊥DE(不須證明).
(1)如圖②,若點E、F不是正方形ABCD的邊BC、CD的中點,但滿足CE=DF,則上面的結(jié)論①、②是否仍然成立;(請直接回答“成立”或“不成立”)
(2)如圖③,若點E、F分別在正方形ABCD的邊CB的延長線和DC的延長線上,且CE=DF,此時上面的結(jié)論①、②是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由.
(3)如圖④,在(2)的基礎(chǔ)上,連接AE和EF,若點M、N、P、Q分別為AE、EF、FD、AD的中點,請先判斷四邊形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一種,并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點A、B的坐標(biāo)分別為(1,4)和(3,0),點C是y軸上的一個動點,且A、B、C三點不在同一條直線上,當(dāng)△ABC的周長最小時,點C的坐標(biāo)是
A.(0,0)B.(0,1)C.(0,2)D.(0,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2014年1月,國家發(fā)改委出臺指導(dǎo)意見,要求2015年底前,所有城市原則上全面實行居民階梯水價制度.小明為了解市政府調(diào)整水價方案的社會反響,隨機訪問了自己居住在小區(qū)的部分居民,就“每月每戶的用水量”和“調(diào)價對用水行為改變”兩個問題進行調(diào)查,并把調(diào)查結(jié)果整理成下面的圖1,圖2.
小明發(fā)現(xiàn)每月每戶的用水量在5m2-35m2之間,有8戶居民對用水價格調(diào)價漲幅抱無所謂,不用考慮用水方式的改變.根據(jù)小明繪制的圖表和發(fā)現(xiàn)的信息,完成下列問題:
(1)n= ,小明調(diào)查了 戶居民,并補全圖1;
(2)每月每戶用水量的中位數(shù)和眾數(shù)分別落在什么范圍?
(3)如果小明所在的小區(qū)有1800戶居民,請你估計“視調(diào)價漲幅采取相應(yīng)的用水方式改變”的居民戶數(shù)有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AD∥BC,BC=4AD=4,∠B=45°.直角三角板含45°角的頂點E在邊BC上移動,一直角邊始終經(jīng)過點A,斜邊與CD交于點F.若△ABE為等腰三角形,則CF的長等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有20筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:
與標(biāo)準(zhǔn)質(zhì)量的差值(單位:千克) | 0 | 1 | 2.5 | |||
筐數(shù) | 1 | 4 | 2 | 3 | 2 | 8 |
(1)20筐白菜中,最重的一筐比最輕的一筐多重多少千克?
(2)與標(biāo)準(zhǔn)重量比較,20筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價2.8元,則出售這20筐白菜可賣多少元?(結(jié)果保留整數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com