【題目】如圖,已知: 平分, 垂直平分, , ,垂足分別是點(diǎn)、.求證(1) ;(2) .
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)連接CE、BE,根據(jù)線段垂直平分線的性質(zhì)得到EC=EB,根據(jù)角平分線的性質(zhì)得到EF=EG,于是證得Rt△CFE≌Rt△BGE,即可得到結(jié)論;
(2)根據(jù)AE平分∠BAC,EF⊥AC,EG⊥AB,得到EF=EG,證得Rt△AGE≌Rt△AFE,得到AG=AF,于是得到結(jié)論.
試題解析:證明:(1)連接CE、BE,∵ED垂直平分BC,∴EC=EB,∵AE平分∠CAB,EF⊥AC,EG⊥AB,∴EF=EG,在Rt△CFE和Rt△BGE中,∵EC=EB,EF=EG,∴Rt△CFE≌Rt△BGE,∴BG=CF;
(2)∵AE平分∠BAC,EF⊥AC,EG⊥AB,∴EF=EG,在Rt△AGE和Rt△AFE中,∵AE=AE,EG=EF,∴Rt△AGE≌Rt△AFE,∴AG=AF,∵AB=AG+BG,∴AB=AF+CF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)某公交公司有A,B型兩種客車,它們的載客量和租金如下表:
紅星中學(xué)根據(jù)實(shí)際情況,計(jì)劃租用A,B型客車共5輛,同時(shí)送七年級(jí)師生到基地校參加社會(huì)實(shí)踐活動(dòng),設(shè)租用A型客車x輛,根據(jù)要求回答下列問題:
(1)用含x的式子填寫下表:
(2)若要保證租車費(fèi)用不超過1900元,求x的最大值;
(3)在(2)的條件下,若七年級(jí)師生共有195人,寫出所有可能的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)-23+ (2018+3)0-; (2)992-69×71;
(3) ÷(-3xy); (4)(-2+x)(-2-x);
(5)(a+b-c)(a-b+c); (6)(3x-2y+1)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
關(guān)于,的二元一次方程有一組整數(shù)解則方程的全部整數(shù)解可表示為(為整數(shù)).
問題:求方程的所有正整數(shù)解.
小明參考閱讀材料,解決該問題如下:
解:該方程一組整數(shù)解為則全部整數(shù)解可表示為(為整數(shù)).
因?yàn)?/span>解得.因?yàn)?/span>為整數(shù),所以0或.
所以該方程的正整數(shù)解為和.
請(qǐng)你參考小明的解題方法, 完成下面的問題:
(1)方程的全部正整數(shù)解為______________;
(2)方程的全部整數(shù)解表示為: (為整數(shù));
(3)方程的正整數(shù)解有多少組? 請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)是線段所在平面內(nèi)任意一點(diǎn),分別以、為邊,在同側(cè)作等邊和等邊,聯(lián)結(jié)、交于點(diǎn).
(1)如圖1,當(dāng)點(diǎn)在線段上移動(dòng)時(shí),線段與的數(shù)量關(guān)系是:________;
(2)如圖2,當(dāng)點(diǎn)在直線外,且,仍分別以、為邊,在 同側(cè)作等邊和等邊,聯(lián)結(jié)、交于點(diǎn).(1)的結(jié)論是否還存在?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.此時(shí)是否隨的大小發(fā)生變化?若變化,寫出變化規(guī)律,若不變,請(qǐng)求出的度數(shù);
(3)如圖3,在(2)的條件下,聯(lián)結(jié),求證: 平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)D、F、E、G都在△ABC的邊上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).(請(qǐng)?jiān)谙旅娴目崭裉幪顚懤碛苫驍?shù)學(xué)式)
解:∵EF∥AD,(已知)
∴∠2= ( )
∵∠1=∠2,(已知)
∴∠1= ( )
∴ ∥ ,( )
∴∠AGD+ =180°,(兩直線平行,同旁內(nèi)角互補(bǔ))
∵ ,(已知)
∴∠AGD= (等式性質(zhì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的直角坐標(biāo)系中,解答下列問題:
(1)分別寫出A、B兩點(diǎn)的坐標(biāo);
(2)將△ABC向左平移3個(gè)單位長(zhǎng)度,再向上平移5個(gè)單位長(zhǎng)度,畫出平移后的△A1B1C1;
(3)求 △A1B1C1的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖與都是以為直角頂點(diǎn)的等腰直角三角形, 交于點(diǎn),若, ,當(dāng)是直角三角形時(shí),則的長(zhǎng)為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com