【題目】如圖,在平面直角坐標(biāo)系中,直線分別與x、y軸交于A、B兩點(diǎn),將直線AB沿著y軸翻折,交x軸負(fù)半軸于點(diǎn)C.
(1)求直線BC的函數(shù)關(guān)系式;
(2)點(diǎn)P(0,t)在y軸負(fù)半軸上,Q為線段BC上一動(dòng)點(diǎn)(不與B、C重合).連接PA、PQ,PQ=PA
①若點(diǎn)Q為BC中點(diǎn),求t的值;
②用t的代數(shù)式表示點(diǎn)Q的坐標(biāo)和直線PQ的函數(shù)關(guān)系式;
③若M(2m,n-8),N(t3+2t2-2m,n)在直線PQ上,求n的取值范圍.
【答案】(1);(2)①t=-3,②,③-6<t<0,≤n<70
【解析】
(1)根據(jù)題意求出A,B的坐標(biāo),從而可得出C點(diǎn)的坐標(biāo),用待定系數(shù)法即可得出解析式;
(2)①首先根據(jù)Q為BC中點(diǎn),得出Q的坐標(biāo),然后過(guò)Q點(diǎn)作QE⊥y軸,可得QE=3,EP=3-t,OP=|t|,OA=6,然后根據(jù)PQ=PA和勾股定理,可得=,求解即可;
②設(shè)Q(a,a+6),由題意得:,解出方程求出Q的坐標(biāo)為(t,t+6),然后利用待定系數(shù)法求出解析式即可;
③將M(2m,n-8),N(t3+2t2-2m,n)代入PQ的函數(shù)關(guān)系式得,然后消去m得n=3t2+7t+4,在根據(jù)t的取值范圍即可推出,n的取值范圍.
(1)∵直線分別與x、y軸交于A、B兩點(diǎn),
∴可得A(6,0),B(0,6),
∵點(diǎn)C和點(diǎn)A關(guān)于x軸對(duì)稱,
∴C(-6,0),
設(shè)BC的解析式為y=kx+b,
將B,C兩點(diǎn)代入得,
解得:k=1,b=6,
∴BC的解析式為:;
(2)①∵Q為BC中點(diǎn),
∴Q的坐標(biāo)為(-3,3),
過(guò)Q點(diǎn)作QE⊥y軸,
∴E的坐標(biāo)為(0,3),
∴QE=3,EP=3-t,OP=|t|,OA=6,
∵PQ=PA,
∴=,
即=,
解得t=-3;
②設(shè)Q(a,a+6),
由題意得:,
解得,(舍),
∴Q(t,t+6),
設(shè)直線PQ函數(shù)關(guān)系式為y=kx+b,
將Q,P代入得,
解得,
∴直線PQ函數(shù)關(guān)系式為;
③∵點(diǎn)M(2m,n-8),N(t3+2t2-2m,n)在直線PQ上,
由②可得PQ函數(shù)關(guān)系式為,
∴,
消去m得n=3t2+7t+4,
∵Q為線段BC上一動(dòng)點(diǎn)(不與B、C重合),
∴-6<t<0,
∵n=3t2+7t+4,
∴對(duì)稱軸為t=,
∴n的最小值為:n=3×-7×+4=,
當(dāng)t=-6時(shí),n=3×36-7×6+4=70,
當(dāng)t=0時(shí),n=4,
∴n的取值范圍是:≤n<70.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市為慶祝開(kāi)業(yè)舉辦大酬賓抽獎(jiǎng)活動(dòng),凡在開(kāi)業(yè)當(dāng)天進(jìn)店購(gòu)物的顧客,都能獲得一次抽獎(jiǎng)的機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:在一個(gè)不透明的盒子里裝有分別標(biāo)有數(shù)字1、2、3、4的4個(gè)小球,它們的形狀、大小、質(zhì)地完全相同,顧客先從盒子里隨機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,然后把小球放回盒子并攪拌均勻,再?gòu)暮凶又须S機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,并計(jì)算兩次記下的數(shù)字之和,若兩次所得的數(shù)字之和為8,則可獲得50元代金券一張;若所得的數(shù)字之和為6,則可獲得30元代金券一張;若所得的數(shù)字之和為5,則可獲得15元代金券一張;其他情況都不中獎(jiǎng).
(1)請(qǐng)用列表或樹(shù)狀圖(樹(shù)狀圖也稱樹(shù)形圖)的方法(選其中一種即可),把抽獎(jiǎng)一次可能出現(xiàn)的結(jié)果表示出來(lái);
(2)假如你參加了該超市開(kāi)業(yè)當(dāng)天的一次抽獎(jiǎng)活動(dòng),求能中獎(jiǎng)的概率P.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一名運(yùn)動(dòng)員推鉛球,已知鉛球行進(jìn)高度y(單位:m)與水平距離x(單位:m)之間的關(guān)系始終是y=ax2+x+(a為常數(shù),a<0).
(1)解釋上述函數(shù)表達(dá)式中“”的實(shí)際意義;
(2)當(dāng)a=﹣時(shí),這名運(yùn)動(dòng)員能把鉛球推出多遠(yuǎn)?
(3)若這名運(yùn)動(dòng)員某次將鉛球推出的距離不小于(2)中的距離,寫(xiě)出此時(shí)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,O在AB上,以O為圓心,以OA長(zhǎng)為半徑的圓分別與AC,AB交于點(diǎn)D,E,直線BD與⊙O相切于點(diǎn) D.
(1)求證:∠CBD=∠A;
(2)若AC=6,AD:BC=1:.
①求線段BD的長(zhǎng);
②求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新冠肺炎疫情期間,我市對(duì)學(xué)生進(jìn)行了“停課不停學(xué)”的線上教學(xué)活動(dòng).某中學(xué)為了解這期間九年級(jí)學(xué)生數(shù)學(xué)學(xué)習(xí)的情況,開(kāi)學(xué)后進(jìn)行了兩次診斷性練習(xí).綜合成績(jī)由兩次練習(xí)成績(jī)組成,其中第一次練習(xí)成績(jī)占40%,第二次練習(xí)成績(jī)占60%.當(dāng)綜合成績(jī)不低于135分時(shí),該生數(shù)學(xué)學(xué)科綜合評(píng)價(jià)為優(yōu)秀.
(1)小明同學(xué)的兩次練習(xí)成績(jī)之和為260分,綜合成績(jī)?yōu)?/span>132分,則他這兩次練習(xí)成績(jī)各得多少分?
(2)如果小張同學(xué)第一次練習(xí)成績(jī)?yōu)?/span>120分,綜合成績(jī)要達(dá)到優(yōu)秀,他的第二次練習(xí)成績(jī)至少要得多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖),已知經(jīng)過(guò)點(diǎn)A(﹣3,0)的拋物線y=ax2+2ax﹣3與y軸交于點(diǎn)C,點(diǎn)B與點(diǎn)A關(guān)于該拋物線的對(duì)稱軸對(duì)稱,D為該拋物線的頂點(diǎn).
(1)直接寫(xiě)出該拋物線的對(duì)稱軸以及點(diǎn)B的坐標(biāo)、點(diǎn)C的坐標(biāo)、點(diǎn)D的坐標(biāo);
(2)聯(lián)結(jié)AD、DC、CB,求四邊形ABCD的面積;
(3)聯(lián)結(jié)AC.如果點(diǎn)E在該拋物線上,過(guò)點(diǎn)E作x軸的垂線,垂足為H,線段EH交線段AC于點(diǎn)F.當(dāng)EF=2FH時(shí),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+4經(jīng)過(guò)點(diǎn)A(﹣3,0)和點(diǎn)B(3,2),與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)點(diǎn)P是拋物線在第一象限內(nèi)一點(diǎn),聯(lián)結(jié)AP,如果點(diǎn)C關(guān)于直線AP的對(duì)稱點(diǎn)D恰好落在x軸上,求直線AP的截距;
(3)在(2)小題的條件下,如果點(diǎn)E是y軸正半軸上一點(diǎn),點(diǎn)F是直線AP上一點(diǎn).當(dāng)△EAO與△EAF全等時(shí),求點(diǎn)E的縱坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖),已知拋物線經(jīng)過(guò)點(diǎn)和,其頂點(diǎn)為C.
(1)求拋物線的解析式和頂點(diǎn)C的坐標(biāo);
(2)我們把坐標(biāo)為(n,m)的點(diǎn)叫做坐標(biāo)為(m,n)的點(diǎn)的反射點(diǎn),已知點(diǎn)M在這條拋物線上,它的反射點(diǎn)在拋物線的對(duì)稱軸上,求點(diǎn)M的坐標(biāo);
(3)點(diǎn)P是拋物線在第一象限部分上的一點(diǎn),如果∠POA=∠ACB,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的點(diǎn)坐標(biāo)為,點(diǎn)在軸上,點(diǎn)在軸上.點(diǎn)是邊上的動(dòng)點(diǎn),連接,作點(diǎn)關(guān)于線段的對(duì)稱點(diǎn).已知一條拋物線經(jīng)過(guò)三點(diǎn),且點(diǎn)恰好是拋物線的頂點(diǎn),則的值為()
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com