【題目】如圖,在ΔABC中,AC=15,BC=18,sinC=,D是AC上一個(gè)動(dòng)點(diǎn)(不運(yùn)動(dòng)至點(diǎn)A,C),過D作DE∥BC,交AB于E,過D作DF⊥BC,垂足為F,連結(jié)BD,設(shè)CD=x.
(1)用含x的代數(shù)式分別表示DF和BF;
(2)如果梯形EBFD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式;
(3)如果△BDF的面積為S1,△BDE的面積為S2,那么x為何值時(shí),S1=2S2
【答案】(1)DF=x;;(2)S;(3)x=10
【解析】
(1)可在Rt△CFD中,根據(jù)CD的長(zhǎng)和∠C的正弦函數(shù)表示出DF,用勾股定理表示出CF,從而得出BF=BC-CF;
(2)本題中(1)已經(jīng)表示出了BF,DF的長(zhǎng),那么關(guān)鍵是DE的長(zhǎng),可通過DE∥BC,根據(jù)平行線分線段成比例定理,得出關(guān)于AD,AC,DE,BC的比例關(guān)系式,然后根據(jù)BC的長(zhǎng),用x表示出DE,根據(jù)梯形的面積公式即可得出關(guān)于S與x的函數(shù)關(guān)系式;
(3)△BDF中BF,DF已經(jīng)在(1)中得出,梯形的面積也在(2)中得出,可根據(jù)題中給出的它們的比例關(guān)系,得出關(guān)于x的方程,然后通過解方程即可求出x的值.
解:(1)在Rt△CFD中,sinC=,CD=x
∴DF=CD sinC=x
∴CF=
∴BF=18-
(2)∵DE∥BC
∴
∴DE=
∴S=×DF×(DE+BF)=×x×(+18-)=
(3)由S1=2S2,得S1=S
∴(18-)x=()
解得
∴當(dāng)時(shí),S1=2S2.
故答案為(1)DF=x;;(2)S;(3)x=10
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校1000名學(xué)生一周在校參加體育鍛煉的時(shí)間,現(xiàn)從各年級(jí)隨機(jī)抽取了部分學(xué)生,對(duì)他們一周在校參加體育鍛煉的時(shí)間進(jìn)行了調(diào)查,并繪制出如下的統(tǒng)計(jì)圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中的值為 ;
(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),估計(jì)該校一周在校參加體育鍛煉的時(shí)間大于的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寒假期間,小明和好朋友一起前往三亞旅游.他們租住的賓館坐落在坡度為的斜坡上.賓館高為129米.某天,小明在賓館頂樓的海景房處向外看風(fēng)景,發(fā)現(xiàn)賓館前有一座雕像(雕像的高度忽略不計(jì)),已知雕像距離海岸線的距離為260米,與賓館的水平距離為36米,遠(yuǎn)處海面上一艘即將靠岸的輪船的俯角為.則輪船距離海岸線的距離的長(zhǎng)為( )
(參考數(shù)據(jù):,)
A.262米B.212米C.244米D.276米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線BC:y=交x軸于點(diǎn)B,點(diǎn)A在x軸正半軸上,OC為△ABC的中線,C的坐標(biāo)為(m,)
(1)求線段CO的長(zhǎng);
(2)點(diǎn)D在OC的延長(zhǎng)線上,連接AD,點(diǎn)E為AD的中點(diǎn),連接CE,設(shè)點(diǎn)D的橫坐標(biāo)為t,△CDE的面積為S,求S與t的函數(shù)解析式;
(3)在(2)的條件下,點(diǎn)F為射線BC上一點(diǎn),連接DB、DF,且∠FDB=∠OBD,CE=,求此時(shí)S值及點(diǎn)F坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行“五·四”文藝會(huì)演,5位評(píng)委給各班演出的節(jié)目打分.在5個(gè)評(píng)分中,去掉一個(gè)最高分,再去掉一個(gè)最低分,求出評(píng)分的平均數(shù),作為該節(jié)目的實(shí)際得分,對(duì)于某節(jié)目的演出,評(píng)分如下8.9,9.1,9.3,9.4,9.2那么該節(jié)目實(shí)際得分是( )
A.9.4B.9.3C.9.2D.9.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)E是BC上的一個(gè)動(dòng)點(diǎn),連接DE,交AC于點(diǎn)F.
(1)如圖①,當(dāng)時(shí),求的值;
(2)如圖②,當(dāng)點(diǎn)E是BC的中點(diǎn)時(shí),過點(diǎn)F作FG⊥BC于點(diǎn)G,求證:CG=BG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)有一個(gè)可以自由轉(zhuǎn)動(dòng)的圓形轉(zhuǎn)盤(如圖).規(guī)定:顧客購(gòu)物100元以上可以獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),當(dāng)轉(zhuǎn)盤停止時(shí),指針落在哪一個(gè)區(qū)域就獲得相應(yīng)的獎(jiǎng)品(指針指向兩個(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形).下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“鉛筆”的次數(shù)m | 68 | 111 | 136 | 345 | 546 | 701 |
落在“鉛筆”的頻率 (結(jié)果保留小數(shù)點(diǎn)后兩位) | 0.68 | 0.74 | 0.68 | 0.69 | 0.68 | 0.70 |
(1)轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,獲得鉛筆的概率約為_______;(結(jié)果保留小數(shù)點(diǎn)后一位)
(2)鉛筆每只0.5元,飲料每瓶3元,經(jīng)統(tǒng)計(jì)該商場(chǎng)每天約有4000名顧客參加抽獎(jiǎng)活動(dòng),請(qǐng)計(jì)算該商場(chǎng)每天需要支出的獎(jiǎng)品費(fèi)用;
(3)在(2)的條件下,該商場(chǎng)想把每天支出的獎(jiǎng)品費(fèi)用控制在3000元左右,則轉(zhuǎn)盤上“一瓶飲料”區(qū)域的圓心角應(yīng)調(diào)整為______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、C、D是直徑為AB的⊙O上的四個(gè)點(diǎn),CD=BC,AC與BD交于點(diǎn)E。
(1)求證:DC2=CE·AC;
(2)若AE=2EC,求之值;
(3)在(2)的條件下,過點(diǎn)C作⊙O的切線,交AB的延長(zhǎng)線于點(diǎn)H,若S△ACH=,求EC之長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)課上,老師對(duì)大學(xué)說:“你任意想一個(gè)非零實(shí)數(shù),然后按下列步驟操作,我會(huì)直接說出你運(yùn)算的最后結(jié)果”
操作步驟如下:
第一步:計(jì)算這個(gè)數(shù)與1的和的平方,減去這個(gè)數(shù)與1的差的平方
第二步:把第一步得到的數(shù)乘以25
第三步:把第二步得到的數(shù)除以你想的這個(gè)數(shù)
(1)若小明同學(xué)心里想的是數(shù)9,請(qǐng)幫他計(jì)算出最后結(jié)果:
.
(2)老師說:“同學(xué)們,無論你們心里想的是什么非零實(shí)數(shù),按照以上步驟進(jìn)行操作,得到的最后結(jié)果都相等”,小明同學(xué)想驗(yàn)證這個(gè)結(jié)論,于是,設(shè)心里想的數(shù)是a(a≠0),請(qǐng)你幫小明完成這個(gè)驗(yàn)證過程
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com