(2004•黃岡)心理學(xué)家研究發(fā)現(xiàn),一般情況下,學(xué)生的注意力隨著老師講課時(shí)間的變化而變化,講課開(kāi)始時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.經(jīng)過(guò)實(shí)驗(yàn)分析可知,學(xué)生的注意力y隨時(shí)間t(分鐘)的變化規(guī)律有如下關(guān)系式:y=(y值越大表示接受能力越強(qiáng))
(1)講課開(kāi)始后第5分鐘時(shí)與講課開(kāi)始后第25分鐘時(shí)比較,何時(shí)學(xué)生的注意力更集中;
(2)講課開(kāi)始后多少分鐘,學(xué)生的注意力最集中能持續(xù)多少分鐘;
(3)一道數(shù)學(xué)難題,需要講解24分鐘,為了效果較好,要求學(xué)生的注意力最低達(dá)到180,那么經(jīng)過(guò)適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?
【答案】分析:(1)代入題目中的二次函數(shù)即可知道;
(2)由題目可得y=-t2+24t+100化為一般式再求解即可;
(3)要分情況解答該題,把y=180分別代入這兩個(gè)二次函數(shù)等式解答.
解答:解:(1)當(dāng)t=5時(shí),y=195,當(dāng)t=25時(shí),y=205
∴講課開(kāi)始后第25分鐘時(shí)學(xué)生的注意力比講課開(kāi)始后第5分鐘時(shí)更集中.

(2)當(dāng)0<t≤10時(shí),y=-t2+24t+100=-(t-12)2+244,
該圖的對(duì)稱軸為t=12,在對(duì)稱軸左側(cè),y隨x的增大而增大,
所以,當(dāng)t=10時(shí),y有最大值240,
當(dāng)10<t≤20時(shí),y=240
當(dāng)20<t≤40時(shí),y=-7t+380,y隨t的增大而減小,
故此時(shí)y<240
所以,當(dāng)t=20時(shí),y有最大值240.
所以,講課開(kāi)始后10分鐘時(shí),學(xué)生的注意力最集中,能持續(xù)10分鐘.

(3)當(dāng)0<t≤10,令y=-t2+24t+100=180,
∴t=4
當(dāng)20<t≤40時(shí),令y=-7t+380=180,
∴t=28.57
因?yàn)?8.57-4>24,
所以老師可以經(jīng)過(guò)適當(dāng)安排,能在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目.
點(diǎn)評(píng):本題考查點(diǎn)的坐標(biāo)的求法及二次函數(shù)的實(shí)際應(yīng)用,借助二次函數(shù)解決實(shí)際問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年貴州省六盤水市盤縣響水中學(xué)中考數(shù)學(xué)模擬密卷(四)(解析版) 題型:解答題

(2004•黃岡)如圖,Rt△ABO的頂點(diǎn)A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點(diǎn).AB⊥x軸于B,且S△ABO=
(1)求這兩個(gè)函數(shù)的解析式;
(2)求直線與雙曲線的兩個(gè)交點(diǎn)A、C的坐標(biāo)和△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年某市一中高中保送生考試數(shù)學(xué)試卷(浙教版)(解析版) 題型:解答題

(2004•黃岡)在直角坐標(biāo)系XOY中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)的坐標(biāo)分別為A(5,0),B(0,4),C(-1,0).點(diǎn)M和點(diǎn)N在x軸上(點(diǎn)M在點(diǎn)N的左邊),點(diǎn)N在原點(diǎn)的右邊,作MP⊥BN,垂足為P(點(diǎn)P在線段BN上,且點(diǎn)P與點(diǎn)B不重合),直線MP與y軸相交于點(diǎn)G,MG=BN.
(1)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線的表達(dá)式;
(2)求點(diǎn)M的坐標(biāo);
(3)設(shè)ON=t,△MOG的面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(4)過(guò)點(diǎn)B作直線BK平行于x軸,在直線BK上是否存在點(diǎn)R,使△ORA為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)R的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年湖北省黃岡市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•黃岡)在直角坐標(biāo)系XOY中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)的坐標(biāo)分別為A(5,0),B(0,4),C(-1,0).點(diǎn)M和點(diǎn)N在x軸上(點(diǎn)M在點(diǎn)N的左邊),點(diǎn)N在原點(diǎn)的右邊,作MP⊥BN,垂足為P(點(diǎn)P在線段BN上,且點(diǎn)P與點(diǎn)B不重合),直線MP與y軸相交于點(diǎn)G,MG=BN.
(1)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線的表達(dá)式;
(2)求點(diǎn)M的坐標(biāo);
(3)設(shè)ON=t,△MOG的面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(4)過(guò)點(diǎn)B作直線BK平行于x軸,在直線BK上是否存在點(diǎn)R,使△ORA為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)R的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年湖北省黃岡市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•黃岡)如圖,Rt△ABO的頂點(diǎn)A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點(diǎn).AB⊥x軸于B,且S△ABO=
(1)求這兩個(gè)函數(shù)的解析式;
(2)求直線與雙曲線的兩個(gè)交點(diǎn)A、C的坐標(biāo)和△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年四川省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•黃岡)如圖,Rt△ABO的頂點(diǎn)A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點(diǎn).AB⊥x軸于B,且S△ABO=
(1)求這兩個(gè)函數(shù)的解析式;
(2)求直線與雙曲線的兩個(gè)交點(diǎn)A、C的坐標(biāo)和△AOC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案