【題目】如圖,在△ABC中,以BC為直徑的圓交AC于點(diǎn)D,∠ABD=∠ACB.
(1)求證:AB是圓的切線;
(2)若點(diǎn)E是BC上一點(diǎn),已知BE=4,tan∠AEB= ,AB:BC=2:3,求圓的直徑.

【答案】
(1)證明:∵BC是直徑,

∴∠BDC=90°,

∴∠ACB+∠DBC=90°,

∵∠ABD=∠ACB,

∴∠ABD+∠DBC=90°

∴∠ABC=90°

∴AB⊥BC,

∴AB是圓的切線


(2)解:在RT△AEB中,tan∠AEB= ,

= ,即AB= BE=

在RT△ABC中, = ,

∴BC= AB=10,

∴圓的直徑為10


【解析】(1)欲證明AB是圓的切線,只要證明∠ABC=90°即可.(2)在RT△AEB中,根據(jù)tan∠AEB= ,求出BC,在RT△ABC中,根據(jù) = 求出AB即可.
【考點(diǎn)精析】關(guān)于本題考查的切線的判定定理,需要了解切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段 ,分別以 為圓心,大于 為半徑作弧,連接弧的交點(diǎn)得到直線 ,在直線 上取一點(diǎn) ,使得 ,延長(zhǎng) ,求 的度數(shù)為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,EF、BG、DH 都垂直于 FH,AE⊥AB 且 AE=AB,BC⊥CD 且 BC=CD,請(qǐng)按照?qǐng)D中所標(biāo)注的數(shù)據(jù),計(jì)算圖中陰影部分的面積 S 是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b<0;②abc>0;③4a﹣2b+c>0;④a+c>0,其中正確結(jié)論的個(gè)數(shù)為(
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:( 1﹣(π﹣3.14)0 +2sin60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC經(jīng)過(guò)一次平移到△DFE的位置,請(qǐng)回答下列問(wèn)題:

(1)點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)__________,D=__________,BC=__________;

(2)連接CE,那么平移的方向就是__________的方向,平移的距離就是線段__________的長(zhǎng)度;

(3)連接AD,BF,BE,與線段CE相等的線段有__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠130°,∠B60°,AB⊥AC。

1)計(jì)算:∠DAB∠B

2ABCD平行嗎?ADBC平行嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E為矩形ABCD的邊BC的中點(diǎn),以DE為直徑的⊙O交AD于H點(diǎn),過(guò)點(diǎn)H作HF⊥AE于點(diǎn)F.
(1)求證:HF是⊙O的切線;
(2)若DH=3,AF=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是小明家和學(xué)校所在地的簡(jiǎn)單地圖,已知OA=2cm,OB=2.5cm,OP=4cm,點(diǎn)C為OP的中點(diǎn),回答下列問(wèn)題:

(1)圖中距小明家距離相同的是哪些地方?

(2)學(xué)校、商場(chǎng)和停車(chē)場(chǎng)分別在小明家的什么方位?

(3)如果學(xué)校距離小明家400m,那么商場(chǎng)和停車(chē)場(chǎng)分別距離小明家多遠(yuǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案