【題目】某學(xué)校跳繩活動月即將開始,其中有一項為跳繩比賽,體育組為了了解七年級學(xué)生的訓(xùn)練情況,隨機抽取了七年級部分學(xué)生進行1分鐘跳繩測試,并將這些學(xué)生的測試成績(1分鐘的個數(shù),且這些測試成績都在60~180范圍內(nèi))分段后給出相應(yīng)等級,具體為:測試成績在60~90范圍內(nèi)的記為級,90~120范圍內(nèi)的記為級,120~150范圍內(nèi)的記為級,150~180范圍內(nèi)的記為級.現(xiàn)將數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計圖,其中在扇形統(tǒng)計圖中級對應(yīng)的圓心角為,請根據(jù)圖中的信息解答下列問題:

1)在扇形統(tǒng)計圖中,求級所占百分比;

2)在這次測試中,求一共抽取學(xué)生的人數(shù),并補全頻數(shù)分布直方圖;

3)在(2)中的基礎(chǔ)上,在扇形統(tǒng)計圖中,求級對應(yīng)的圓心角的度數(shù).

    

【答案】125%;(2100人,作圖見解析;(354°.

【解析】

1級所在扇形的圓心角的度數(shù)除以360°乘以100%即可求解;

2A級的人數(shù)除以所占的百分比即可求出總?cè)藬?shù),從而求出D級的人數(shù),據(jù)此補齊頻數(shù)分布圖即可;

3)根據(jù)圓心角的度數(shù)公式求解即可.

1級所在扇形的圓心角的度數(shù)為

級所占百分比為

2級有25人,占

抽查的總?cè)藬?shù)為人,

級有人,

頻數(shù)分布圖如圖所示.

3類的圓心角為:

;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形OABC,A(4,0),C(0,3),動點P從點A出發(fā),沿A﹣B﹣C﹣O的路線勻速運動,設(shè)動點P的運動時間為t,△OAP的面積為S,則下列能大致反映S與t之間關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是某班學(xué)生體重的頻數(shù)分布直方圖,則該班學(xué)生體重在4045千克這一組的有________人,體重不足40千克的有________人.(注:4045千克包括40千克,不包括45千克,其他同)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AD平分∠BAC,BD⊥AD,垂足為D,過D作DE∥AC,交AB于E,若AB=5,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD邊長為4,點P從點A運動到點B,速度為1,點Q沿B﹣C﹣D運動,速度為2,點P、Q同時出發(fā),則△BPQ的面積y與運動時間t(t≤4)的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)有一個均勻的轉(zhuǎn)盤被平均分成六等份,分別標有這六個數(shù)字,轉(zhuǎn)動轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止時,指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字(當(dāng)指針恰好指在分界線上時,不記,重轉(zhuǎn)).

1)轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)出的數(shù)字大于的概率是多少;

2)現(xiàn)有兩張分別寫有的卡片,要隨機轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后記下轉(zhuǎn)出的數(shù)字,與兩張卡片上的數(shù)字分別作為三條線段的長度.

①這三條線段能構(gòu)成三角形的概率是多少?

②這三條線段能構(gòu)成等腰三角形的概率是多少?(注:要求寫出各種可能情況)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點是直線上一點,點是直線上一點,且MN//PQ的平分線交于點

1)求證:;

2)過點作直線交于點(不與點重合),交于點E,

①若點在點的右側(cè),如圖2,求證:

②若點在點的左側(cè),則線段、有何數(shù)量關(guān)系?直接寫出結(jié)論,不說理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EF為△ABC的中位線,△AEF的面積為6,則四邊形EBCF的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的弦,D為OA半徑的中點,過D作CD⊥OA交弦AB于點E,交⊙O于點F,且CE=CB.

(1)求證:BC是⊙O的切線;
(2)連接AF,BF,求∠ABF的度數(shù);
(3)如果BE=10,sinA= ,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案