【題目】如圖1:已知直線軸,軸分別交于兩點,以為直角頂點在第一象限內(nèi)做等腰Rt

1)求,兩點的坐標;

2)求所在直線的函數(shù)關(guān)系式;

3)如圖2,直線軸于點,在直線上存在一點,使是△的中線,求點E的坐標.

【答案】1A0,2),B10);(2;(3E的坐標是(-1,-1

【解析】

1y=-2x+2中求出x=0y的值和y=0x的值即可得;

2)作CDx軸,證△ABO≌△BCDBD=OA=2,CD=OB=1,據(jù)此可得C3,1),再根據(jù)待定系數(shù)法求解可得;(3)過點E軸于點F,由的中線得DEBD,然后證明,進而得到EFOB,ODDF,從而求解.

解:(1y=-2x+2中,當x=0y=2,

A0,2),

y=0時,-2x+2=0,解得x=1,

B1,0);

2)如圖①,過點CCDx軸于點D,

則∠AOB=BDC=90°,

∴∠OAB+ABO=90°,

∵△ABC是等腰直角三角形,

AB=BC,∠ABC=90°,

∴∠ABO+CBD=90°

∴∠OAB=DBC,

∴△ABO≌△BCDAAS),

BD=OA=2CD=OB=1,

則點C3,1),

設(shè)直線BC所在直線解析式為y=kx+b,

將點B1,0)、C3,1)代入,得:

解得,

∴直線BC所在直線解析式為

3)過點E軸于點F

的中線

∴ DEBD

EFOB,ODDF

E的坐標是(-1,-1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程的兩個根是,那么,反過來,如果,那么以為兩根的一元二次方程是.請根據(jù)以上結(jié)論,解決下列問題:

(1)已知關(guān)于x的方程+mx+n=0(n≠0),求出個一元二次方程,使它的兩根分別是已知方程兩根的倒數(shù).

(2)已知a、b滿足-15a-5=0,-15b-5=0,求的值.

(3)已知a、b、c均為實數(shù),且a+b+c=0,abc=16,求正數(shù)C的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)在同一平面直角坐標系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.

在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關(guān)系,并說明理由.

小敏與同桌小聰討論后,進行了如下解答:

(1)特殊情況,探索結(jié)論

當點E為AB的中點時,如圖1,確定線段AE與的DB大小關(guān)系.請你直接寫出結(jié)論:

AE DB(填“>”,“<”或“=”).

圖1 2

(2)特例啟發(fā),解答題目

解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).

理由如下:如圖2,過點E作EFBC,交AC于點F.

(請你完成以下解答過程)

(3)拓展結(jié)論,設(shè)計新題

在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若ABC的邊長為1,AE=2,求CD的長(請你直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線是第一、三象限的角平分線.

1)由圖觀察易知A02)關(guān)于直線l的對稱點A′的坐標為(2,0),請在圖中分別標明B5,3)、C-2,5)關(guān)于直線l的對稱點B′、C′的位置,并寫出他們的坐標:___________、___________

2)結(jié)合圖形觀察以上三組點的坐標,你會發(fā)現(xiàn):坐標平面內(nèi)任一點關(guān)于第一、三象限的角平分線的對稱點的坐標為___________(不必證明);

(3)已知兩點、,試在直線L上畫出點Q,使點QD、E兩點的距離之和最小,求QD+QE的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=kx+bx軸于點A,交y軸于點B,直線y=2x4x軸于點D,與直線AB相交于點C32).

1)根據(jù)圖象,寫出關(guān)于x的不等式2x4kx+b的解集;

2)若點A的坐標為(5,0),求直線AB的解析式;

3)在(2)的條件下,求四邊形BODC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C

(1)求拋物線的解析式;

(2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;

(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在梯形 ABCD 中,AD//BC,AB=AD=CD=13,AEBC,垂足為 EAE=12,求邊 BC 的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩種機器人都被用來搬運化工原料,型機器人每小時搬運的化工原料是型機器人每小時搬運的化工原料的1.5倍,型機器人搬運900所用時間比型機器人搬運800所用時間少1小時.

1)求兩種機器人每小時分別搬運多少化工原料?

2)某化工廠有8000化工原料需要搬運,要求搬運所有化工原料的時間不超過5小時,現(xiàn)計劃先由6型機器人搬運3小時,再增加若干個型機器人一起搬運,請問至少要增加多少個型機器人?

查看答案和解析>>

同步練習冊答案