【題目】圖1所示的三棱柱,高為,底面是一個(gè)邊長(zhǎng)為的等邊三角形.
(1)這個(gè)三棱柱有 條棱,有 個(gè)面;
(2)圖2方框中的圖形是該三棱柱的表面展開(kāi)圖的一部分,請(qǐng)將它補(bǔ)全;
(3)要將該三棱柱的表面沿某些棱剪開(kāi),展開(kāi)成一個(gè)平面圖形,需剪開(kāi) 條棱,需剪開(kāi)棱的棱長(zhǎng)的和的最大值為 .
【答案】(1)9,5;(2)見(jiàn)解析;(3)5,31.
【解析】
(1)n棱柱有n個(gè)側(cè)面,2個(gè)底面,3n條棱,2n個(gè)頂點(diǎn);
(2)利用三棱柱及其表面展開(kāi)圖的特點(diǎn)解題;
(3)三棱柱有9條棱,觀察三棱柱的展開(kāi)圖可知沒(méi)有剪開(kāi)的棱的條數(shù)是4條,相減即可求出需要剪開(kāi)的棱的條數(shù).
(1)這個(gè)三棱柱有條9棱,有個(gè)5面,
故答案為:9,5;
(2)如圖(答案不唯一);
(3)由圖形可知:沒(méi)有剪開(kāi)的棱的條數(shù)是4條,
則至少需要剪開(kāi)的棱的條數(shù)是:9﹣4=5(條),
故至少需要剪開(kāi)的棱的條數(shù)是5條,
需剪開(kāi)棱的棱長(zhǎng)的和的最大值為:7×3+5×2=31(cm),
故答案為:5,31.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,,點(diǎn)是射線上一動(dòng)點(diǎn)(與點(diǎn)不重合),分別平分和,分別交射線于點(diǎn).
(1) ; ;
(2)當(dāng)點(diǎn)運(yùn)動(dòng)到某處時(shí),,求此時(shí)的度數(shù).
(3)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),:的比值是否隨之變化?若不變,請(qǐng)求出這個(gè)比值;若變化,請(qǐng)找出變化規(guī)律;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在今年我市初中學(xué)業(yè)水平考試體育學(xué)科的女子800米耐力測(cè)試中,某考點(diǎn)同時(shí)起跑的小瑩和小梅所跑的路程S(米)與所用時(shí)間t(秒)之間的函數(shù)圖象分別為線段OA和折線OBCD,下列說(shuō)法正確的是( )
A. 小瑩的速度隨時(shí)間的增大而增大B. 小梅的平均速度比小瑩的平均速度大
C. 在起跑后180秒時(shí),兩人相遇D. 在起跑后50秒時(shí),小梅在小瑩的前面
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于E,過(guò)點(diǎn)E作EG⊥AC于G,交BC的延長(zhǎng)線于F.
(1)求證:AE=BE;
(2)求證:FE是⊙O的切線;
(3)若FE=4,F(xiàn)C=2,求⊙O的半徑及CG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知兩地相距6千米,甲騎自行車(chē)從地出發(fā)前往地,同時(shí)乙從地出發(fā)步行前往地.
(1)已知甲的速度為16千米/小時(shí),乙的速度為4千米/小時(shí),求兩人出發(fā)幾小時(shí)后甲追上乙;
(2)甲追上乙后,兩人都提高了速度,但甲比乙每小時(shí)仍然多行12千米,甲到達(dá)地后立即返回,兩人在兩地的中點(diǎn)處相遇,此時(shí)離甲追上乙又經(jīng)過(guò)了2小時(shí).求兩地相距多少千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的一塊地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,則這塊地的面積為( 。┢椒矫祝
A. 96 B. 204 C. 196 D. 304
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與x軸,y軸的正半軸分別交于點(diǎn)A,B,AB=2,∠OAB=45°
(1)求一次函數(shù)的解析式;
(2)如果在第二象限內(nèi)有一點(diǎn)C(a,);試用含有a的代數(shù)式表示四邊形ABCO的面積,并求出當(dāng)△ABC的面積與△ABO的面積相等時(shí)a的值;
(3)在x軸上,是否存在點(diǎn)P,使△PAB為等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結(jié)論:①DE=CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正確的是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com