【題目】如圖,I點為△ABC的內(nèi)心,D點在BC上,且IDBC,若∠B=44°,C=56°,則∠AID的度數(shù)為何?( 。

A. 174 B. 176 C. 178 D. 180

【答案】A

【解析】

連接CI,利用三角形內(nèi)角和定理可求出∠BAC的度數(shù),由I點為ABC的內(nèi)心,可得出∠CAI、ACI、DCI的度數(shù),利用三角形內(nèi)角和定理可得出∠AIC、CID的度數(shù),再由∠AID=AIC+CID即可求出∠AID的度數(shù).

連接CI,如圖所示.

ABC中,∠B=44°,ACB=56°,

∴∠BAC=180°﹣B﹣ACB=80°.

I點為ABC的內(nèi)心,

∴∠CAI=BAC=40°,ACI=DCI=ACB=28°,

∴∠AIC=180°﹣CAI﹣ACI=112°,

IDBC,

∴∠CID=90°﹣DCI=62°,

∴∠AID=AIC+CID=112°+62°=174°.

故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的頂點為P(﹣2,2),與y軸交于點A(0,3).若平移該拋物線使其頂點P沿直線移動到點P′(2,﹣2),點A的對應點為A′,則拋物線上PA段掃過的區(qū)域(陰影部分)的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當AM的值為時,四邊形AMDN是矩形; ②當AM的值為時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CB切⊙O于點B,CA交⊙O于點D且AB為⊙O的直徑,點E是 上異于點A、D的一點.若∠C=40°,則∠E的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,是將長方形紙牌ABCD沿著BD折疊得到的,圖中包括實線、虛線在內(nèi)共有全等三角形______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD和正方形CEFG邊長分別為ab,正方形CEFG繞點C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;BEDG;DE2+BG2=2a2+2b2,其中正確結(jié)論有( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】寫出所有滿足下列條件的數(shù):

(1)大于-且小于的所有整數(shù);

(2)小于的所有正整數(shù);

(3)絕對值小于的所有整數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,L1,L2分別表示一種白熾燈和一種節(jié)能燈的費用y(費用=燈的售價+電費,單位:元)與照明時間x(h)的函數(shù)圖像,假設兩種燈的使用壽命都是2000h,照明效果一樣.

(1)根據(jù)圖像分別求出L1,L2的函數(shù)關系式.

(2)當照明時間為多少時,兩種燈的費用相等?

(3)小亮房間計劃照明2500h,他買了一個白熾燈和一個節(jié)能燈,請你幫他設計最省錢的用燈方法(直接給出答案,不必寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知雙曲線y= 經(jīng)過點B(3 ,1),點A是雙曲線第三象限上的動點,過B作BC⊥y軸,垂足為C,連接AC.
(1)求k的值;
(2)若△ABC的面積為6 ,求直線AB的解析式;
(3)在(2)的條件下,寫出反比例函數(shù)值大于一次函數(shù)值時x的取值范圍.

查看答案和解析>>

同步練習冊答案