精英家教網(wǎng)如圖,平行四邊形ABCD中,AB=10,BC=6,E、F分別是AD、DC的中點(diǎn),若EF=7,則四邊形EACF的周長是( 。
A、20B、22C、29D、31
分析:先由平行四邊形ABCD,可得,AD=BC=6,CD=AB=10,再由E、F分別是AD、DC的中點(diǎn),可得AE=
1
2
AD=3,CF=
1
2
CD=5,根據(jù)三角形中位線定理,可得AC=2EF=14,從而求出四邊形EACF的周長.
解答:解:已知平行四邊形ABCD,
∴AD=BC=6,CD=AB=10,
又E、F分別是AD、DC的中點(diǎn),
∴AE=
1
2
AD=3,CF=
1
2
CD=5,
∴由三角形中位線定理得:
AC=2EF=2×7=14,
∴四邊形EACF的周長為:EA+AC+CF+EF
=3+14+5+7=29,
故選:C.
點(diǎn)評:此題考查的知識點(diǎn)平行四邊形性質(zhì)和三角形中位線定理的應(yīng)用,關(guān)鍵是由平行四邊形性質(zhì)得出AD=BC=6,CD=AB=10,再由再由E、F分別是AD、DC的中點(diǎn),得出AE和CF,根據(jù)三角形中位線定理得出AC=2EF=14.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長是關(guān)于x的一元二精英家教網(wǎng)次方程x2-7x+12=0的兩個(gè)根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點(diǎn),且S△AOE=
16
3
,求經(jīng)過D、E兩點(diǎn)的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,請直接寫出F點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線BE交AD于E點(diǎn),AB=3,ED=1,則平行四邊形ABCD的周長是
14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對角線AC、BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定角度后,分別交BC、AD于點(diǎn)E、F.
精英家教網(wǎng)
(1)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;
(2)當(dāng)旋轉(zhuǎn)角為90°時(shí),在圖2中畫出直線AC旋轉(zhuǎn)后的位置并證明此時(shí)四邊形ABEF是平行四邊形;
(3)在直線AC旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).(圖供畫圖或解釋時(shí)使用)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平行四邊形ABCD中,對角線AC和BD相交于點(diǎn)O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD的兩條對角線AC、BD相交于點(diǎn)O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長為
20
20

查看答案和解析>>

同步練習(xí)冊答案