已知n是正整數(shù),則奇數(shù)可以用代數(shù)式2n+1來表示.
(1)分解因式:(2n+1)2-1;
(2)我們把所有”奇數(shù)的平方減去1”所得的數(shù)叫”白銀數(shù)”,則所有”白銀數(shù)”的最大公約數(shù)是多少?請簡要說明理由.
【答案】分析:(1)可根據(jù)平方差公式進行因式分解;
(2)由(1)可知,“白銀數(shù)”為4n(n+1),觀察式子,n(n+1)中,n、n+1必有一個是偶數(shù),因此這個白銀數(shù)必是8的倍數(shù),由此求得白銀數(shù)的最大公約數(shù).
解答:解:(1)(2n+1)2-1=(2n+1+1)(2n+1-1)=4n(n+1);(3分)
(2)所有”白銀數(shù)”的最大公約數(shù)是8;(1分)
理由:∵n正整數(shù),則n與n+1必有一個偶數(shù),∴n(n+1)必是2的倍數(shù),則4n(n+1)必是8的倍數(shù),
∴所有”白銀數(shù)”的最大公約數(shù)是8.(2分)
點評:此題主要考查了因式分解以及奇數(shù)、偶數(shù)的表示方法,正確判斷出n(n+1)是2的倍數(shù),是解決此題的關(guān)鍵.