【題目】將自然數(shù)按照下表進(jìn)行排列:
用表示第行第列數(shù),例如表示第4行第3列數(shù)是29.)
(1)已知,_________,___________;
(2)將圖中5個(gè)陰影方格看成一個(gè)整體并在表格內(nèi)平移,所覆蓋的5個(gè)自然數(shù)之和能否為2021?若能,求出這個(gè)整體中左上角最小的數(shù);若不能,請(qǐng)說(shuō)明理由;
(3)用含的代數(shù)式表示_________.
【答案】(1)6,5;(2)不能,理由見(jiàn)解析;(3).
【解析】
(1)觀察表中的數(shù)據(jù),然后根據(jù)數(shù)據(jù)的變化即可求解;
(2)設(shè)其中最小的數(shù)為x,則其余4個(gè)數(shù)可表示為:、、、,然后利用和為2021建立方程進(jìn)一步求解,觀察其是否符合題意即可;
(3)根據(jù)表中數(shù)據(jù)的變化進(jìn)一步找出代數(shù)式即可.
(1)觀察表中數(shù)據(jù)規(guī)律加以推算可得:當(dāng)時(shí),6,5,
故答案為:6,5;
(2)設(shè)其中最小的數(shù)為x,則其余4個(gè)數(shù)可表示為:、、、,
則:+++=2021,
即:,
解得:,
∵,
∴395是第44行第9列的數(shù),
∵,其是第45行第4列的數(shù),
∴二者不在同一行,
∴將圖中5個(gè)陰影方格看成一個(gè)整體并在表格內(nèi)平移,所覆蓋的5個(gè)自然數(shù)之和不能為2021;
(3)根據(jù)題意可得:,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)舉行“中華誦經(jīng)典誦讀”大賽,小學(xué)、中學(xué)組根據(jù)初賽成績(jī),各選出5名選手組成小學(xué)代表隊(duì)和中學(xué)代表隊(duì)參加市級(jí)決賽,兩個(gè)代表隊(duì)各選出的5名選手的決賽成績(jī)分別繪制成下列兩個(gè)統(tǒng)計(jì)圖
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均數(shù)(分 | 中位數(shù)(分 | 眾數(shù)(分 | |
小學(xué)組 | 85 | 100 | |
中學(xué)組 | 85 |
(1)寫(xiě)出表格中,,的值: , , .
(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)隊(duì)的決賽成績(jī)較好?
(3)計(jì)算兩隊(duì)決賽成績(jī)的方差,并判斷哪一個(gè)代表隊(duì)選手成績(jī)較穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(背景知識(shí))數(shù)軸上兩點(diǎn)表示的數(shù)分別為,則兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為.
(問(wèn)題情境)已知數(shù)軸上有兩點(diǎn),點(diǎn)表示的數(shù)分別為和40,點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)運(yùn)動(dòng)開(kāi)始前,兩點(diǎn)之間的距離為___________,線段的中點(diǎn)所表示的數(shù)為__________;
(2)它們按上述方式運(yùn)動(dòng),兩點(diǎn)經(jīng)過(guò)多少秒會(huì)相遇?相遇點(diǎn)所表示的數(shù)是多少?
(3)當(dāng)為多少秒時(shí),線段的中點(diǎn)表示的數(shù)為8?
(情景擴(kuò)展)已知數(shù)軸上有兩點(diǎn),點(diǎn)表示的數(shù)分別為和40,若在點(diǎn)之間有一點(diǎn),點(diǎn)所表示的數(shù)為5,點(diǎn)開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng),同時(shí),點(diǎn)和點(diǎn)分別以每秒5個(gè)單位長(zhǎng)度和2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).
(4)請(qǐng)問(wèn):的值是否隨著運(yùn)動(dòng)時(shí)間的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①是一張長(zhǎng)為18,寬為12的長(zhǎng)方形硬紙板,把它的四個(gè)角都剪去一個(gè)邊長(zhǎng)為的小正方形,然后把它折成一個(gè)無(wú)蓋的長(zhǎng)方體盒子(如圖②),請(qǐng)回答下列問(wèn)題:
(1)折成的無(wú)蓋長(zhǎng)方體盒子的容積 ;(用含的代數(shù)式表示即可,不需化簡(jiǎn))
(2)請(qǐng)完成下表,并根據(jù)表格回答,當(dāng)取什么正整數(shù)時(shí),長(zhǎng)方體盒子的容積最大?
1 | 2 | 3 | 4 | 5 | |
160 | ________ | 216 | ________ | 80 |
(3)從正面看折成的長(zhǎng)方體盒子,它的形狀可能是正方形嗎?如果是正方形,求出的值;如果不是正方形,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=﹣x2+2x+3與x軸交于A,B,與y軸交于C,拋物線的頂點(diǎn)為D,直線l過(guò)C交x軸于E(4,0).
(1)寫(xiě)出D的坐標(biāo)和直線l的解析式;
(2)P(x,y)是線段BD上的動(dòng)點(diǎn)(不與B,D重合),PF⊥x軸于F,設(shè)四邊形OFPC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;
(3)點(diǎn)Q在x軸的正半軸上運(yùn)動(dòng),過(guò)Q作y軸的平行線,交直線l于M,交拋物線于N,連接CN,將△CMN沿CN翻轉(zhuǎn),M的對(duì)應(yīng)點(diǎn)為M′.在圖2中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計(jì)劃在堤坡種植白楊樹(shù),現(xiàn)甲、乙兩家林場(chǎng)有相同的白楊樹(shù)苗可供選擇,其具體銷售方案如下:
設(shè)購(gòu)買白楊樹(shù)苗x棵,到兩家林場(chǎng)購(gòu)買所需費(fèi)用分別為(元)、(元). 則:
(1)該村需要購(gòu)買1500棵白楊樹(shù)苗,若都在甲林場(chǎng)購(gòu)買所需費(fèi)用為 元,若都在乙林場(chǎng)購(gòu)買所需費(fèi)用為 元;
(2)分別求出、與x之間的函數(shù)關(guān)系式;
(3)如果你是該村的負(fù)責(zé)人,應(yīng)該選擇到哪家林場(chǎng)購(gòu)買樹(shù)苗合算,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是菱形,點(diǎn)A的坐標(biāo)為(0,),分別以A,B為圓心,大于AB的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E,F,直線EF恰好經(jīng)過(guò)點(diǎn)D,則點(diǎn)D的坐標(biāo)為( 。
A. (2,2)B. (2,)C. (,2)D. (+1,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,且點(diǎn)B與點(diǎn)C的坐標(biāo)分別為B(3,0).C(0,3),點(diǎn)M是拋物線的頂點(diǎn).
(1)求二次函數(shù)的關(guān)系式;
(2)點(diǎn)P為線段MB上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D.若OD=m,△PCD的面積為S,試判斷S有最大值或最小值?并說(shuō)明理由;
(3)在MB上是否存在點(diǎn)P,使△PCD為直角三角形?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過(guò),,三點(diǎn).
求拋物線的解析式;
若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫(xiě)出相應(yīng)的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com