【題目】如圖是一個包裝紙盒的三視圖(單位:cm)
(1)該包裝紙盒的幾何形狀是什么?
(2)畫出該紙盒的平面展開圖.
(3)計算制作一個紙盒所需紙板的面積.(精確到個位)

【答案】解:(1)該包裝紙盒的幾何形狀是直六棱柱;
(2)如圖所示:

(3)由圖可知:正六棱柱的側面邊長為5的正方形,上下底面是邊長為5的正六邊形,
側面面積:6×5×5=150(cm2),
底面積:2×6××5×5=75
制作一個紙盒所需紙板的面積:150+75=75(2+)≈280(cm2).
【解析】(1)易得此幾何體為六棱柱,
(2)利用(1)中所求得出該紙盒的平面展開圖;
(3)根據(jù)表面積=2×六邊形的面積+6×正方形的面積求出即可.
【考點精析】根據(jù)題目的已知條件,利用由三視圖判斷幾何體的相關知識可以得到問題的答案,需要掌握在三視圖中,通過主視圖、俯視圖可以確定組合圖形的列數(shù);通過俯視圖、左視圖可以確定組合圖形的行數(shù);通過主視圖、左視圖可以確定行與列中的最高層數(shù).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為C.延長AB交CD于點E.連接AC,作∠DAC=∠ACD,作AF⊥ED于點F,交⊙O于點G.
(1)求證:AD是⊙O的切線;
(2)如果⊙O的半徑是6cm,EC=8cm,求GF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,AB=AC,以BC為邊作等邊△BDC,連接AD.

(1)如圖1,直接寫出∠ADB的度數(shù)   ;

(2)如圖2,作∠ABM=60°BM上截取BE,使BE=BA,連接CE,判斷CEAD的數(shù)量關系,請補全圖形,并加以證明;

(3)在(2)的條件下,連接DE,AE.若∠DEC=60°,DE=2,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某一空間圖形的三視圖如下圖所示,其中主視圖:半徑為1的半圓以及高為1的矩形;左視圖:半徑為1的四分之一圓以及高為1的矩形;俯視圖:半徑為1的圓,求此圖形的體積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,ABC的三個頂點坐標分別為A(0,4),B(3,4),C(4,﹣1).

(1)試在平面直角坐標系中,畫出ABC;

(2)直接寫出ABC的面積_________

(3)若A1B1C1ABC關于x軸對稱,直接寫出A1、B1、C1的坐標___________________________________

(4)在x軸上找到一點P,使點P到點A、B兩點的距離和最;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:ABC, B=60°,D、E分別為AB、BC上的點,AE、CD交于點F.

(1)如圖1,AE、CDABC的角平分線. ①求證: AFC=120°;②若AD=6,CE=4,求AC的長?

(2)如圖2,若∠FAC=FCA=30°,求證:AD=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,MAN=90°,射線AE在這個角的內(nèi)部,點B、C分別在∠MAN的邊AMAN上,且AB=ACCFAE于點F,BDAE于點D.求證:ABD≌△CAF;

2)如圖2,點B、C分別在∠MAN的邊AMAN上,點E、F都在∠MAN內(nèi)部的射線AD上,∠1、2分別是ABECAF的外角.已知AB=AC,且∠1=2=BAC.求證:ABE≌△CAF;

3)如圖3,在ABC中,AB=ACABBC.點D在邊BC上,CD=2BD,點EF在線段AD上,∠1=2=BAC.若ABC的面積為15,求ACFBDE的面積之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直角坐標平面內(nèi),一點光源位于A(0,5)處,線段CD⊥x軸,D為垂足,C(3,1),則CD在x軸上的影長為   ,點C的影子的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,∠ABC=45°,點DBC邊上一動點(與點B,C不重合),點E與點D關于直線AC對稱,連結AE,過點BBFED的延長線于點F.

(1)依題意補全圖形;

(2)當AE=BD時,用等式表示線段DEBF之間的數(shù)量關系,并證明.

查看答案和解析>>

同步練習冊答案